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Abstract 

The mechanical behavior of erythrocytes is 
studied both experimentally and numerically. In the 
experimental part, prepared silica microbeads are 
attached to the surface of spherically swollen 
erythrocytes (red blood cells, RBCs) in a suspension. 
The cells are then stretched by single laser beam via 
the microbeads. A relation between the stretching 
force and cell deformation is quantitatively assessed. 
Meanwhile, a physical model for an axisymmetric 
cell is introduced to study its deformation by 
different level of stretching force. By comparing the 
experimental and numerical data, stiffness of the cell 
membrane can be determined and the optimal values 
are found to agree with other studies by different 
techniques such as micropipette aspiration or high 
frequency electric field. 
 
Introduction 
 

Laser trapping has been widely used to manipulate 
small objects ranging from atoms to living cells in many 
research areas such as biology, medicine, physics and 
engineering. The trapping force is due to the radiation 
pressure in electromagnetic field, generated by photons’ 
momentum [1-3]. The magnitude of such force is on the 
order of one to hundreds piconewtons (pN) from most 
commercially available systems.  

The simplest instrument among all is the single 
beam laser trap, called optical tweezers, which is a very 
useful tool in the study of cell biology. One example is 
the study of mechanical behavior of erythrocytes 
suspended in buffer solution [4]. In this study, a single 
laser trapped erythrocyte will rotate and re-orientate 
until it reaches an equilibrium position. A relationship 
between the torque and angle of orientation can be 
established from the experimental data. Dharmadhikari 
[5] also reported the re-orientation of malaria-infected 
RBCs by laser trapping in the buffer solution. They 
found the original biconcave disk shape of erythrocyte 
was folded into a rod-like shape after deformation. 

One advantage of laser trapping is that it is a non-
destructive method of measuring overall material 
response to the external loadings because the force field 
can be directly applied on the cell without destroying it. 
In order to pin point down the force location, a highly 
focused laser beam is preferred. However, the smallest 
focus can be made is dictated by the wavelength of 
laser. Typical wavelengths for trapping purpose are 
1064, 980 and 830 nm. Shorter wavelength could 

penetrate the membranes of cell and nucleus to damage 
the DNA and kill the cell.  

For a selected wavelength, the cell can be targeted 
more easily and accurately by the laser beam if a small 
microbead attached to its surface as the marker [6-8]. 
This approach reduces the directly shining of laser beam 
on the cell and thus avoid cell being deformed by the 
radiation pressure. Moreover, the microbeads can be 
used as handles since they are smaller and much stiffer 
than cells. 

In this paper, an experiment study on the 
deformation of erythrocytes by single laser beam stretch 
is carried out. The erythrocytes, specially processed to 
become spherical shape in a suspension, are mixed up 
with microbeads for spontaneous adhesion. The 
deformation of erythrocytes is measured at different 
level of force. A mechanical model is also introduced to 
simulate the deformation of erythrocytes. By comparing 
the experimental and numerical results, the stiffness 
modulus of cell membrane is predicted quantitatively. 
 
Experiment 
 
Cell and Microbead Preparation 

Fresh blood was drawn from white rats and stored in 
acid citrate dextrose (Sigma C3821) at 4℃ in 
refrigerator. An aliquot of blood sample was first 
diluted in phosphate-buffered saline (PBS, Sigma 
P4417) then rinsed and fractionated by centrifugation 
three times. Similarly, silica microbeads purchased from 
Bangs Laboratories (Fishers, IN, US) were rinsed in 
deionized water and centrifugated for several times. The 
repetitive wash for RBCs and microbeads is to ensure 
the spontaneous adhesion between RBCs and 
microbeads in later processes. 

The washed RBCs and microbeads were diluted 
again by PBS to the concentration of ~1×105/µl and 
~2×105/µl respectively. After diluting, 20µl of each 
suspension was mixed together in a little vial. The equal 
amount is intended to make every two beads adhered to 
one erythrocyte. The mixed suspension was incubated at 
4°C for 1 hour to allow spontaneous and nonspecific 
adhesion between the microbeads and RBCs [3, 6-8]. 
After the adhesion between RBCs and beads were 
confirmed under an optical microscope, the suspension 
of mixture was further diluted to ~1×103 cells/µl in a 
hypotonic buffer (10mM potassium phosphate, pH7.4, 
75mM NaCl, i.e., 155mOsm/kg), with a small amount 
(~1mg/ml) of Bovine serum albumin (BSA, Sigma 
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 A4503) added to prevent RBCs from sticking to the 
glass plate [6]. This suspension should be kept for about 
10~20 minutes before the experiment of laser trapping 
can be started, for allowing RBCs to swell into spherical 
or nearly spherical shape. 
 
Optical tweezers 

A schematic drawing of the optical tweezers is 
shown in Fig.1. The whole system was purchased from 
Cell Robotics Inc., NM, US. Source of laser is Nd:YAG 
and pumped by a 1.5W diode. Laser is then reflected 
through dichroic mirrors and focused by an inverted 
microscope (Nikon optical microsystem) before it 
reaches the objects. The wavelength of 1064nm is 
chosen to minimize the absorption by water and 
hemoglobin. This is to avoid the possible damage due to 
the heating by laser on trapped RBCs [9]. 

 
Fig.1 Schematic drawing of the optical tweezers 
(Module 1064/1500 from Cell Robotics Inc.). 
 

The chamber for observation is assembled of glass 
slides and coverslips. Prior to the experiment, all slides 
and coverslips were treated with BSA (100mg/ml). In 
addition, the bottom glass slides were silanized with 
Dichlorodimethylsilane solution (C2H6Cl2Si, Sigma 
85126) [10]. Dichlorodimethylsilane solution is 
commonly used in protein analysis for silanizing the 
glass to prevent sticking of proteins [10].  
 
Force Calibrations 

Our main purpose of this experimental study is to 
find the relation between external loading and cell 
deformation. Though the force cannot be measured 
directly, it can be calibrated with the input power of 
laser. Using silica beads only, we can trap the beads by 
laser and let the fluid flow over it. At a certain power 
level, there is a maximum fluid velocity beyond that the 
trapping force can no longer hold the beads. This is an 
equilibrium state where the trapping force is balanced 
by the viscous drag force [11]. Therefore, following the 
Stokes’ flow, the trapping force is  

VRF ηπ6=     (1) 
where  is the radius of microbeads, R η  the liquid 
viscosity (1.01×10-3 Pa⋅sec at 25℃ for water) and V  

the maximum velocity directly measured by the system 
from its motor speed. 

Fig.2 shows the calibration of trapping force vs. 
input power of laser with a linear curve fitting. This 
linear relation was explained earlier by Lenormand et al 
[11]. The relative accuracy in the calibration is 
estimated to be ~10% mainly due to the uncertainty in 
microbeads’ size. Note that all observations and 
measurements were made at room temperature in the 
laboratory (~25℃). 
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Fig.2 Force calibration by dragging a silica bead 
(2.34mm in dia.) in Stoke’s flow at the maximum 
escape velocity. 
 
Image Processing  

In order to measure the deformation of erythrocytes, 
each photo taken by CCD camera is digitally processed 
by the MATLAB. Since the average size of microbeads 
is known (2.34µm in dia.), our main task is to find the 
edges of erythrocytes and microbeads in each photo and 
measured their distance in pixels. Based upon the 
known size of microbeads, a conversion between the 
pixels and the real physical length can be established in 
a statistical way by randomly measuring any two 
opposite points on the perimeter of a bead. This 
mapping is fairly accurate as long as the measures are 
made at many different locations. For example, the 
conversion is found to be 0.023237 µm/pixel for the cell 
no.1 in Table 1. 
 
Experimental Results  

Experimental results of five example cells are shown 
in Fig. 3 along with selected images. Corresponding 
values of all measurements are listed in Table 1. The 
geometry of cells is measured by image processing as 
mentioned previously. The stretching force is calculated 
by the correlation of the trapping force and input power 
from Fig. 2. For accuracy, we specifically carried out 
experiments each time at different force level for each 
cell instead of running through the whole range from 2 
to 15 pN. Note that the radius of attachment δ  by beads 
is also measured and tabulated. This small dimension 
has to be included later in the mechanical modeling. To 
further quantify the experimental results, a transverse 
( tε ) and longitudinal strain ( lε ) are introduced as 
following 

0

0

0 D
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where  is the original diameter ( ) of RBCs 
before deformation;  is the maximum length 
perpendicular to the stretching direction and  the 
maximum length parallel to the stretching. To avoid 
confusion, Eq. (2) and (3) are specifically defined to 
make both strains positive. It is found that the transverse 
strain in this study is easier to identify and measured 
than the longitudinal one due to the attachment by 
beads. Fig. 3 demonstrates a positive correlation 
between the stretching force and transverse strain for 
five selected cells. In other words, the more stretching, 
the more elliptic cell could become. 

0D R2=
D

L

where ϕ  is the meridional angle, s  and  are arc 

lengths before and after deformation. Note that  is 
exactly the meridional angle 

S
*s

ϕ  because ϕas = . 
Also, we can have two dimensionless, principal 

curvatures of membrane in the meridional ( s  or ϕ ) and 
circumferential (θ ) as [15] 

*
*

dS
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ϕκκ ==    (8) 

*
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Note that 
as
1

== θκκ  in the undeformed cell.  can 

be directly calculated once  and 

*
θκ

*R ϕ  are determined. 
Correspondingly, two principal stretches (strains) 

along the circumferential (θ ) and meridional ( s  or ϕ ) 
directions are introduced as [15] 
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Physically, the first term represents the change of arc 
length along the meridional direction and the second 
term the radius change along the circumferential one. 
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Fig.3 Experimental data and images of deformed RBCs 
with attached silca microbeads (3.204mm in dia.) at 
different stretching forces. 
 
Mechanical Modeling 
 

Erythrocytes are known to have a simpler structure 
than other mammal cells for that they consists of 
membrane (phospholipid bi-layer) and cytoplasm 
(mainly hemoglobin with iron particles) without nucleus 
or mitochondria. The plasma membrane is stiffer than 
the cytoplasm and thus maintains the structure integrity. 
For this reason, RBCs are conventionally represented by 
their membranes in many mechanical models. 

Fig.4 Geometry of the RBC membrane before and after 
deformation  
 
Constitutive Law 

Here we adopted the earlier studies by Pamplona and 
Calladine [15] on bi-lipid layer to assume there exist 
resultant tensile forces (N⋅m-1,  and  in Fig. 4) 
across the membrane thickness in any infinitesimal 
element. Note that the principal direction is coincident 
with the circumferential and meridian directions for 
axisymmetric cases. We can further represent the tensile 
stresses in terms of the average (

sT θT 

T ) and deviatoric part 
as [15] 

 
Geometry and Kinematic Relation 

Considering a spherical cell membrane with radius 
 is axisymmetrically deformed along the stretching 

direction (z*-direction, cf. Fig. 4). Introducing two non-
dimensional coordinates: , , 

 and ,   for 
the membrane before and after deformation 
respectively, then the followings have to be valid [15].  

a

s*
arr /* =

aZ /* =

azz /* =

aS /=as /= aRR /* = Z S*

λ
1HTTs +=     (12) 

λθ HTT +=     (13) ** sin sr =     (4) where H  is the modulus of stiffness (N⋅m-1) and 
** cos1 sz −=     (5) ****1 /sin/ dSdssRs ==== −λλλ θ  (14) 

ϕcos
*
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dR     (6) Note that this relation is valid provided that membrane 

is incompressible (constant area), i.e. 1=sλλθ . 
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  Eq. (15) – (18) together with conditions (20) – (25) 
form a non-linear, boundary value problem which can 
be solved by Runge-Kutta method. But to start the 
procedure, the initial values of ϕ  and  at  have to 
be guessed. With successive adjustment of both initial 
values by simplex method to meet the conditions (24) – 

(25) at 

*
sκ *

0s

2
π , accurate solutions can be obtained. To 

facilitate the whole simulations, following starting 
conditions at  are recommended also. *

0s

Equilibrium and Governing Equations 
Equilibrium equations for the cell membrane can be 

found from the classical theory for shells [16-17]. For 
axisymmetry, those equations reduce to two for the 
tension *T and curvature  along the arc length . 
Combining the geometric requirements Eq. (6) – (8), we 
can have the whole set of governing equations in a 
dimensionless form as  
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Numerical Solutions 
Since is much smaller than the cell, its variation 

on the cell deformation is very minor. Using the average 
value  from Table 1 and the previously 
proposed numerical scheme, the profile of deformed cell 
by different stretching force can be obtained as shown 
in Fig. 5. The higher stretching force, the more 
elongation of cell in the 

*δ

0* = 185.δ

*Z  direction as expected. The 
membrane could become concave locally near the 
adhesion area if stretching is high enough.  

The last two, (18) and (19), are equilibrium equations 
for tension and curvature with replacements of , 

and  from (8) – (11). Note that for computational 
purposes the derivative is changed from the current 

configuration (

*
θκ

sλ θλ

*dS
d ) back to the original one (

*ds
d

T /

) by 

the chain rule in (14). The dimensionless stresses are 
defined as T , T  and T . HTss /* = HT /*

θθ = H* =
 

185.0* =δ

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

-1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 
Z* 

R
* 

0.5 F*=0.1 

0.9 
1.2 

1.5 

0.5

0.91.21.5

0.1

185.0* =δ
Fig.5 Numerical results for the deformed RBC with 
microbeads attached ( ). 

 
3.4 Boundary Conditions and Numerical Calculations 

The boundary conditions were imposed by 
considering the beads attachment at , *1*

0
* sin δ−== ss
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0)( *
0

* =sZ     (21) 

0
*
0 )( ϕϕ =s     (22) 

)(
)sin(

sin2
)( *

0
*

*
0

0
*

*
*
0

*

sR
sFsT −=

ϕπδ
  (23) 

and two-fold symmetry at 
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Numerical and Experimental Results Comparison 
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Comparisons of the experimental and numerical results 
are made based upon the transverse strain tε  defined 
earlier in Eq. (2) to find the stiffness H  of membrane. 
It is first noticed that H  is a scale to non-
dimensionalize the stretching force ( aHFF =* ). 

where aHFF =*  is the dimensionless stretching 

force and aδδ =* . Eq. (23) and (25) were obtained by 

the overall force balance between F  and T  around the 
cell assuming that 

*
s

F  are highly concentrated in the 
adhesion area. 
 



The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005 
EMBEC'05  Prague, Czech Republic 

IFMBE Proc. 2005 11(1)  ISSN: 1727-1983 © 2005 IFMBE  
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a v e ra g e  
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( p ix e ls )  
δ ∗  = δ /a  ε t ε l 

H × 1 0 -6  
(N ⋅m -1 )  

O p t im a l 
H × 1 0 -6  
(N ⋅m -1 )  

2 .4 1 5  1 4 8 .0 8 2  1 2 0 .0 0 3  0 .0 5 9 6  0 .1 6 0 5  4 .1 7 2 1  
3 .6 2 3  1 5 7 .2 9 5  1 1 7 .6 4 1  0 .0 7 8 6  0 .2 3 2 7  4 .6 8 1 7  1  1 2 7 .6 0 6  1 .4 8 2  
4 .8 3 0  1 6 9 .8 9 6  1 1 7 .3 8 0  

2 5 .2 6  0 .1 9 8  
0 .0 8 0 1  0 .3 3 1 4  6 .0 7 0 0  

5 .1 8 2 1  

Table 1: Experimental measurement of five RBCs 

2 .4 1 5  1 5 6 .9 4 4  1 3 0 .7 5 0  0 .0 5 2 6  0 .1 3 7 2  4 .4 0 4 8  
3 .6 2 3  1 7 3 .5 3 4  1 2 8 .2 5 0  0 .0 7 0 7  0 .2 5 7 4  4 .8 1 9 5  2  1 3 8 .0 0 7  1 .6 0 2  
4 .8 3 0  1 8 8 .8 5 8  1 2 4 .5 0 0  

2 4 .0 7  0 .1 7 4  
0 .0 9 7 9  0 .3 6 8 5  4 .5 1 1 5  

4 .5 6 4 8  

4 .8 3 0  1 7 8 .5 9 4  1 1 0 .0 1 3  0 .1 0 9 6  0 .4 4 5 6  4 .4 4 8 4  
6 .0 3 8  1 8 3 .2 4 9  1 0 7 .3 8 0  0 .1 3 0 9  0 .4 8 3 2  4 .5 5 5 9  3  1 2 3 .5 4 8  1 .4 3 5  
7 .2 4 5  1 8 8 .2 8 6  1 0 6 .2 5 0  

2 3 .7 1  0 .1 9 4  
0 .1 4 0 0  0 .5 2 4 0  5 .0 6 3 7  

4 .7 4 8 4  

8 .4 5 3  2 0 7 .5 8 0  1 0 5 .0 0 1  0 .1 6 5 6  0 .6 4 9 5   4 .7 8 2 1  
9 .6 6 0  2 2 5 .1 4 3  1 0 2 .6 2 6  0 .1 8 4 5  0 .7 8 9 1   4 .8 1 8 3  4  1 2 5 .8 4 1  1 .4 6 5  

1 0 .8 6 8  2 4 0 .6 7 0  1 0 2 .2 5 1  
2 3 .0 3  0 .1 8 4  

0 .1 8 7 5  0 .9 1 2 5   5 .3 1 9 4  
5 .0 0 2 1  

9 .6 6 0  1 8 1 .5 9 8  1 2 1 .0 0 0  0 .1 5 2 3  0 .2 7 2 2   5 .3 0 6 3  
1 2 .0 7 5  1 9 7 .2 9 8  1 1 4 .0 0 0  0 .2 0 1 4  0 .3 8 2 2   4 .7 8 7 8  5  1 4 2 .7 4 3  1 .6 5 7  
1 4 .4 9 0  2 1 8 .0 0 7  1 1 0 .7 5 0  

2 4 .8 1  0 .1 7 4  
0 .2 2 4 1  0 .5 2 7 3   5 .0 5 4 3  

5 .0 0 0 8  

 
 Therefore for each tε  measured in the experiment, we 

can determine *F  correspondingly from the numerical 
solutions in Fig. 5. Then using the measured data of  
and 

a
F  from the 3rd and 4th column in Table 1, the 

stiffness H  can be calculated. Results are shown in the 
second to last column in Table 1 for every 
measurement. Conversely, we can find a single value of 
H  for each cell. But this single value cannot 
completely match all numerical stε  from the 
experiment. Thus, an optimization of  

Conclusions  
 

In this study, an experimental work of single beam 
laser stretched erythrocytes was conducted. The 
erythrocytes were specially treated by buffer solutions 
to become spherical shape and attached by prepared 
silica microbeads. The relation of stretching force and 
cell deformation was quantitatively assessed by the 
digital image processing. In addition, a mechanical 
model was introduced to simulate the deformation of 
cell membrane by stretching. Comparisons of the 
experimental and numerical data were made by 
matching a defined transverse strain to determine the 
stiffness of membrane. An optimal stiffness of each 
example cell in the experiment was also calculated by 
minimizing the errors between the experimental and 
numerical data. The optimal stiffness ranging 4.56~5.18 
µN⋅m-1 is very close to those from other studies by 
different experimental techniques such as micropipette 
aspiration or high frequency electric field.  


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i

i
t

i
t εε  (30) 

has to be solved for every cell to determine an optimal 
H . The constraint of H  is restricted to the maximum 
and minimum of three  for each cell in Table 1. The 
optimal values of 

sH
H , listed in the last column of Table 

1, results a good correlation between the experiments 
and computations as shown in Fig. 6. Its range, 
4.56~5.18 µN⋅m-1, is close to the studies in [6] (2.5±0.5 
µN⋅m-1), and [14, 18-20] (4.0~10.0 µN⋅m-1) for human 
RBCs measured by other techniques such as 
micropipette aspiration or high frequency electric field. 
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