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Abstract: An estimator for the motor unit fiber 
density (MUFD) is proposed, using artificial neural 
networks and motor unit action potential (MUAP) 
parameters as inputs. Training and evaluation sets of 
MUAPs were simulated using muscle, needle and 
signal models, varying three physiological 
parameters (MUFD, variance of the innervation 
point and variance of muscle fiber diameter), and 
allowing random placement of the needle. 
Additionally, a new MUAP parameter was defined to 
improve the performance of the estimator under 
variations of the placement of the needle. 
Multivariate statistical methods were employed to 
detect structural patterns and to perform 
dimensionality reduction on the sample data. Most 
parameters were found to be interdependent and 
highly correlated with either MUFD, variance of the 
innervation point or irregularity of the MUAP. Input 
parameters were chosen according to the 
information gathered with multivariate statistical 
analysis. Estimator performance was evaluated using 
maximum and RMS error. Network architecture 
and training algorithm selection was done to 
minimize estimation error and computational 
complexity.  
 
Introduction 
 

Neuromuscular pathologies may cause changes in 
the number of fibers of motor units (MUs) produced by 
loss of fibers, as in miopathies, and/or reinnervation 
processes, as in neuropathies. Useful information about 
the structure and functioning of a MU may be obtained 
from the motor unit action potential (MUAP), a record 
of the electrical activity of the MU perceived in a needle 
electrode placed into the MU territory. Several MUAP 
parameters have been defined to describe the MUAP 
quantitatively [1-3], and are commonly used in daily 
diagnosis. We can find parameters related to MUAP 
size (area, amplitude, duration...) shape (number of 
turns, phases, irregularity...) and frequency components. 
MUAP size parameters are concerned with 
measurement of bigger or smaller MU, mainly related to 
MUFD, while shape parameters are related to 
synchronization of the different single fiber action 
potentials (SFAPs) forming the MUAP. 

Those characterizing parameters have a great 
variability, since there are many factors affecting them. 
One factor is the placement of the needle, as insertion 
determines the distance between the electrode and the 
sources (muscle fibers). Another factor is the difficulty 
of the parameter measurement itself, as in duration. 
Finally, the main source of intrinsic variability in the 
parameters is the nature of the MUAP, formed by a 
delayed summation of the SFAPs, influenced by 
innervation point dispersion, MF diameters, MF 
positions, etc. All this variability difficults the setting of 
normality thresholds, and the discrimination accuracy 
between normal and pathological muscles is 
compromised. A desirable property of new parameters 
is the robustness, making them less dependent from all 
the sources of variability. 

This study is concerned with the estimation of the 
motor unit fiber density (MUFD), which measures the 
number of muscle fibers (MFs) of a MU per mm2. In 
our approach, we use artificial neural networks (ANNs) 
to estimate MUFD from MUAP parameters. This 
estimator, as calculated from MUAP parameters, can 
also be viewed as a new MUAP parameter. 

 
Materials and Methods 
 

We used a MUAP simulator to generate synthetic 
MUAPs related to certain muscle and insertion 
conditions. MUFD is a physiological parameter that is 
unreachable in-vivo, as its measurement implies 
dissection of the muscle under study. However, 
simulation techniques are generalized and accepted as a 
research tool [4,5]. 

Our simulator makes use of models for the muscle 
[6,7], the needle and single fiber action potential [8]. To 
simulate the muscle, several physiological parameters 
defining the MUs (MUFD and mean and variance of 
diameter), the MFs (length and mean and variance of 
diameter), innervation point (mean and variance of 
longitudinal placement, mean and variance of fire 
delays) can be controlled. For the electrode, the 
insertion position of the needle and the accuracy of the 
numerical integration can be controlled. Finally, for the 
SFAP model the Dimitrov-Dimitrova convolutional 
model is employed, and we used normative parameters, 
even that some of them can also be varied [9]. 
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 We simulated 10,000 muscles according to available 
morphological measurements about Vastus Medialis 
muscle, varying three physiological parameters: the 
MUFD (between 5 and 45 fibers/mm2), the variance of 
the innervation point (IP) (between 0 and 16 mm) and 
the variance of the MF diameter (between 0 and 25 µm). 
To do this, we took 100 regularly spaced intervals for 
the MUFD and 10 for both IP variance and MF diameter 
variance. In each of the 10,000 cubes defined in the 
parameter space, we generated 50 independent MUs, 
with a random selection of the three parameters among 
the cube limits, and with an homogeneous distribution 
of muscle fibers. Needle insertion points were located in 
a random position inside the motor unit territory and all 
the muscle’s length, simulating a random needle 
placement. 

We selected those three physiological parameters to 
be varied to have a sample were all the pathological 
conditions, implying some loose or increase of muscle 
fibers were represented. We included random placement 
of the needle to obtain a good estimator robust to 
changes in recording conditions, especially under 
proximity to the neuromuscular junction and tendons 
areas. 

To better agree with real potentials we established 
amplitude and rise-time criteria over simulated MUAPs. 
Only those with amplitude greater than 50 µV and rise-
time smaller than 500 µV/ms were accepted. If some 
potential did not match the criteria it was rejected and 
another one was simulated instead. As a result, we had a 
sample of 500,000 simulated MUAPs. 

MUAPs were characterized using a set of 17 
parameters previously defined in quantitative EMG 
literature [1-3] (duration, amplitude, area, thickness, 
size-index, number of phases, number of turns, turns to 
phases ratio, irregularity, spike duration, spike area, rise 
time, slope, maximum slope, maximum frequency, 
median frequency and mean frequency), and a new 
parameter defined for this study: the pre-spike duration, 
defined as the time from the beginning of the MUAP to 
the beginning of the spike. 
 

 
 
Figure 1: Pre-spike duration and its relation with other 
duration parameters: MUAP and spike duration 

The available data were separated in two sets for 
training and evaluation respectively. A previous 
multivariate study [10] was done with the training 
sample. We studied the relations between physiological 
and MUAP parameters, and among MUAP parameters 
themselves, with multivariate techniques looking for 
structural patterns in the data set. We calculated 
univariate correlations and canonical correlations (CC) 
among MUAP and physiological parameters to detect 
dependencies. We applied principal component analysis 
(PCA) to check the dimensionality of the MUAP 
parameters data set, applying Kaiser and Cattel’s Scree 
criteria over resulting eigenvalues. We applied factor 
analysis (FA) to the MUAP parameters data set varying 
the number of factors from 10 to 4, trying to detect 
structural patterns by commonalities, considering 
significant the parameters with a factor loading greater 
than 0.5. 

We designed an ANN-based MUFD estimator after 
having analyzed several backpropagation (BP) and 
radial basis (RB) ANN configurations [11], and 
compared different training algorithms, number of 
layers and number of neurons. The previous 
multivariate statistical study helped us to select the right 
inputs for the ANN, since we knew we were looking for 
an estimator capable of making predictions under 
different IP variance and MF diameter variance, and 
changing needle placement conditions. 

To evaluate estimation quality we calculated 
maximum, mean and RMS errors in function of MUFD, 
to have a picture of estimation quality at different 
densities, and for the whole evaluation data set at time, 
to have a numerical merit figure to compare the 
different approaches. We chose the number of neurons 
in the hidden layer of BP networks so that the 
relationship between estimation quality and 
computational complexity was optimized. 
 
Results 
 

Univariate correlation analysis gave us correlations 
among MUAP and physiological parameters. The 
parameters with a greater correlation with MUFD were 
amplitude (ρ=0.68, p<0.001), area (ρ=0.83, p<0.001), 
spike area (ρ=0.81, p<0.001) and size-index (ρ=0.83, 
p<0.001); the more correlated with IP variance were  
number of turns (ρ=0.61, p<0.001), rise time (ρ=0.67, 
p<0.001), thickness (ρ=0.67, p<0.001), slope (ρ=0.68, 
p<0.001) and maximum slope (ρ=0.63, p<0.001); the 
more correlated with longitudinal position of the 
electrode were pre-spike duration (ρ=0.97, p<0.001) and 
duration (ρ=0.62, p<0.001); finally, no parameter was 
correlated with MF diameter variance neither to radial 
position of the electrode more than 0.3. 

Canonical correlation analysis detected the linear 
combination of MUAP parameters that maximize the 
correlation with physiological parameters. Analyzing 
the correlations among CCs and physiological and 
MUAP parameters (figure 2), we observed that the 1st 
CC explains the MUFD (ρ=0.96, p<0.001) with a 
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 combination of area and size-index; 2nd CC explains the 
longitudinal position of the electrode (ρ=0.91, p<0.001) 
in terms of pre-spike duration; 3rd CC explains a mixture 
of MUFD and IP variance in terms of amplitude, area, 
thickness, spike duration and slope; and the rest of CCs 
offered a mixture of both physiological and MUAP 
parameters hardly interpretable, even more, without a 
significant correlation among them. 

 

 
 

 
 
Figure 2: Correlation coefficients among CCs and 
physiological and MUAP parameters. Each parameter 
contains 6 bars corresponding to the correlations with 
the 6 CCs. MUAP parameters are labeled as follows: 1 - 
duration, 2 - amplitude, 3 - area, 4 - thickness, 5 - size-
index, 6 - phases, 7 - turns, 8 - T/F ratio, 9 - irregularity, 
10 - spike duration, 11 - spike area, 12 - pre-spike 
duration, 13 - rise time, 14 - slope, 15 - maximum slope, 
16 - maximum frequency, 17 - median frequency, 18 - 
mean frequency 

 
As a result of PCA, we observed that the first 6 

principal components (PCs) could explain 90% of input 
data variance. Applying Kaiser criterion, 5 PCs were 
enough to represent the data. Attending to Cattel’s Scree 
criterion, only 4 PCs were sufficient. To evaluate the 
information that PCs brought about physiological 
parameters, we calculate their correlations. The 1st and 

2nd PCs, were highly correlated with the MUFD 
(ρ=0.73, p<0.001 and ρ=0.65, p<0.001 respectively), the 
3rd PC was highly correlated with the longitudinal 
position of the electrode (ρ=0.69, p<0.001), and the 4th 
PC, with the variance of the IP (ρ=0.53, p<0.001). None 
of the PCs was appreciably correlated with variance in 
the MFs diameter. 

The results of factor analysis depend on the number 
of common factors extracted. For a 6 factors FA (figure 
3), the 1st factor depended on amplitude, area, size-
index, spike area, slope and maximum slope, which are 
indeed parameters highly correlated with DFUM; the 2nd 
factor included the duration, thickness, spike duration 
and rise time, which are parameters highly correlated 
with the IP variance; the 3rd factor was formed by 
irregularity, number of phases, turn to phases ratio and 
mean frequency, which are parameters that depend on 
the complexity of the wave form; the 4th factor is mainly 
formed by the pre-spike duration, parameter related to 
the longitudinal position of the needle; the 6th factor is 
the number of turns, and the rest of factors did not 
present any loading factor greater than 0.5. 

 

 
 

Figure 3: Factor loadings of MUAP parameters in a 6 
factors FA. Each parameter contains 6 bars 
corresponding to the loading in each factor. MUAP 
parameters are labeled as in figure 2. 

 
For a 4 factors FA, results showed a reordering in 

the factor loadings. The 1st factor remains unchanged, 
while the 2nd includes the slope and maximum slope, the 
3rd factor includes now the number of turns in this 
complexity dependent group, and the 4th factor is now 
only represented by the pre-spike duration. 

Considering this study, we chose three different sets 
of parameters as inputs of the ANN (table 1) to evaluate 
the estimation capabilities of each group. The three 
groups are formed by one (or two in set III) 
parameter(s) correlated with MUFD (spike area and/or 
size-index), another one correlated with the variance in 
the IP (spike duration), an index of MUAP irregularity 
(number of phases), and finally our estimator of the 
longitudinal needle placement (pre-spike duration). 
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 Table 1: Input parameters sets 
 

Set Input parameters 

I spike area, spike duration, number of phases, 
pre-spike duration 

II size-index, spike duration, number of phases, 
pre-spike duration 

III spike area, size-index, spike duration, number 
of phases, pre-spike duration 

 
After evaluation of accuracy of the different sets 

(table 2), we observed that the set that includes the size-
index (II) is slightly superior, both in maximum and 
RMS errors, to the one that includes the spike area (I) as 
MUFD dependent parameters. Further quality 
improvement can be obtained if the two parameters are 
included in the same set (III). 

 
Table 2: Estimation evaluation with different sets of 
input parameters 
 

ANN – Input parameters emax (%) eRMS (%) 

Set I 10.94 2.41 
Set II 9.81 2.37 
Set III 8.46 2.12 

 
Table 3: Estimation evaluation with different algorithms 
 

ANN – Training settings emax (%) eRMS (%) 

BP – Momentum Gradient 9.01 2.41 
BP – Lèvenberg-Marquardt 8.46 2.12 
RB – 25 neurons 8.36 2.07 
RB – 15 neurons 8.26 2.03 

 
Regarding the estimation quality, RB with 15 

neurons appeared as the best ANN. From a 
computational point of view, BP networks were the 
least demanding in memory requirements and 
computation time. In a trading between estimation 
quality and computational cost, BP with Lèvenberg-
Marquardt training algorithm seems to be the best 
solution. 

 

 
 

Figure 4: Performance of MUFD estimator 

Discussion 
 

Estimation capabilities of physiological and 
anatomical dimensions of a MU are very limited if just 
one MUAP parameter is employed. Multivariate 
approaches are more effective [1,12] since they are 
capable of bringing out more information about the 
numerous variables implied in the generation and 
acquisition of the MUAP. The ANN-based approach 
[13], multivariate in essence, is very effective and 
allows reaching very accurate estimates due to the 
nonlinear relations extracted from the training data. 

Accurate estimates of MUFD are obtained when 
four network inputs are used, correlated respectively to 
the MUFD, the IP variance, the irregularity of the 
MUAP wave form and the longitudinal position of the 
electrode. Further improvement of accuracy is obtained 
if another MUFD dependent parameter is included. 

That means that, in terms of MUAP parameters, and 
in what it attains to MUFD or size of the MU, 
information brought by the 18 parameters considered 
can be condensed in 5 or 6. 

It is interesting to see that one of the parameters 
needed to perform an accurate estimation is the newly 
formulated pre-spike duration. Its correlation with 
longitudinal position of the needle helps to reduce the 
uncertainty of the estimation. 

With this methodology, estimation with simulated 
signals is simple and effective. However, simulation 
itself has its own limitations. Even if simulators are 
widely accepted as a research tool, validation studies are 
not sufficient to ensure the adequacy of simulated 
signals. 

Physiological data that feed the simulator are taken 
from anatomical studies [14-16] not always complete 
neither free from contradictions. Moreover, muscles are 
different from each other and may suffer changes, apart 
from pathological, due to aging or other circumstances. 

The next step should be evaluating the ability to 
discriminate between normal and pathological muscles 
with real MUAPs, what will require further researches. 

To apply this technique to real signals, as well as 
normative parameters are calculated for the different 
human muscles in quantitative EMG, a different ANN 
should be trained with MUAP generated from 
physiological parameters according to that muscle, to 
obtain a good MUFD estimator for each muscle. 

If the accuracy in real signals was the same that in 
simulated ones, this estimator would help to reduce the 
range of normative values, increasing discrimination 
capacity among normal and pathological muscles, this 
way increasing diagnostic capabilities of quantitative 
EMG. 
 
Conclusions 
 

The use of ANN to estimate MUFD seems an 
adequate solution to the problem of estimation MUFD 
from the MUAP parameters. High estimation accuracy 
is reached with relatively low computational 
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 complexity. It seems to be a promising technique that, if 
it is proved to be as efficient in real signals, could 
increase diagnostic abilities of quantitative needle EMG 
techniques. Further research has to be done in this way. 

In addition, information gathered by the MUAP 
parameters already defined can be condensed in a few 
set, as long as we can extract all the physiological 
information available from them. The pre-spike duration 
parameter seems to be a good option to obtain 
information about the needle insertion that was not 
considered earlier. 
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