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Abstract: We quantitatively studied the 
performances of six ICA algorithms (FastICA, 
JADE, Infomax, CubICA, TDSEP and MRMI-SIG) 
in the separation of signal components embedded in 
fetal magnetocardiographic recordings, with 
particular attention to the reconstruction of fetal 
cardiac signals. Synthetic datasets of increasing 
complexity were prepared, and real fMCG 
recordings were simulated with linear combinations 
of usual fMCG source signals: maternal and fetal 
cardiac activity, ambient noise, maternal respiration 
and sensor spikes. The signal-to-interference ratio 
(SIR) was calculated for all separated components 
and for fetal traces in particular. Computation times 
for fetal signals of at least 20 dB SIR were calculated 
for all algorithms. No significant dependency on 
gestational age or cluster dimension was observed. 
Infomax, TDSEP and MRMI-SIG were sensitive to 
additive noise. FastICA, CubICA and JADE showed 
the best overall performances, FastICA having the 
best values of fetal SIR and very short computation 
times. 
 
Introduction 
 

Independent Component Analysis (ICA) is a signal 
processing technique able to recover mutually 
independent but otherwise unknown original source 
signals from their linear instantaneous mixtures [1-5]. 
ICA has been lately employed also in the field of 
biomedical signal processing [6], in particular when 
biomedical signals recorded with multi-channel devices 
need to be separated into their components [7-10]. 

A recent biomedical application of ICA regards the 
processing of datasets recorded with fetal 
magnetocardiography (fMCG) [11,12], which is a 
noninvasive technique useful for the prenatal 
assessment of the fetal heart function and fetal well-
being in a variety of clinical situations [13-17]. Indeed, 
fMCG recordings are linear mixtures of signals related 
to fetal cardiac activity, maternal cardiac function and 
environmental magnetic noise. We demonstrated in 
previous papers the reliability of ICA for the retrieval of 

high-quality fetal cardiac signals from fMCG recordings 
[18-21].  

The present study regards the evaluation of the 
performances of six different ICA algorithms, 
commonly used for biomedical analysis, with particular 
attention to fetal signals. Those performances were 
evaluated on simulated datasets of increasing 
complexity, obtained from the combination of several 
variables able to represent different fetal maturation and 
types of noise. 

 
Materials and Methods 
 

The solution of the general ICA problem consists in 
the separation of source signals that are linearly mixed 
in the input recordings by using vectorial operations.  
Let us assume that the observed n random variables 
were generated by a linear instantaneous mixture of m 
source signals, or independent components. The ICA 
linear expansion is: 
 

s(t)A x(t) =  (1) 
 
where s1(t), s2(t),…sm(t)  are the source signals, x1(t), 
x2(t),…xn(t) are the instantaneous mixtures, and A 
denotes the [n×m] mixing matrix [1-3].  

A basic assumption of ICA is that source signals are 
independent, and that at most one of them may have a 
Gaussian distribution. The independence of source 
signals can be defined as: 
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where fi is the probability density function (pdf) of si, 
and f is the joint density of s1, s2,…sm . 

For systems fulfilling the ICA basic assumption, 
equation (1) can be solved using information contained 
in x(t) only, and the independent components (ICs) can 
be retrieved determining a [m×n] matrix W, named 
unmixing matrix, such as:  

 
(t) (t) xWy =  (3) 
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 where the m-dimensional vector y(t) is the best estimate 
of the source vector s(t). According to the ICA theory 
[1-3], y(t) can be found minimizing the average mutual 
information (AMI) 
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where py is the probability distribution function 
associated with y(t), and pyi is the probability 
distribution function associated with yi(t).  

A set of multichannel fMCG recordings satisfies the 
requirements of the ICA problem, because a large 
number of simultaneous observations are available for 
the solution of the ICA problem, and also because the 
source signals, produced by the maternal and fetal 
hearts, are independent signals and linearly mixed in the 
recordings [18].  

In the present study, six ICA algorithms were 
investigated; they were three classical ICA algorithms 
(FastICA [22], JADE [23], Infomax [24]) and three 
more recent algorithms (CubICA [25], TDSEP [26], and 
MRMI-SIG [27]). Each algorithm used a different 
approach to solve equation 3, hence to minimize AMI. 

FastICA: the fixed-point ICA algorithm (FastICA) 
minimizes AMI by maximizing the normalized 
differential entropy J of the estimated source signals, 
which is called negentropy [1, 28]; it is defined as the 
difference between the entropy of a Gaussian random 
variable ygauss with the same variance of the observed 
random variable y and the entropy of y: 

 
)y(H)y(H)y(J gauss −=  (5) 

 
being the entropy H of a random vector y(t) with density 
py(.) defined as: 
 

∫−= dy)plog(p)y(H yy  (6) 
 

JADE: the Joint Approximate Diagonalization of 
Eigen-matrices (JADE) estimates the uncorrelation and 
statistical independence of sources respectively with the 
reduction of the second-order and fourth-order 
cumulants ( )y(Cαβ   and  )y(Cαβγδ  ) to zero. 

Infomax: The Bell-Sejnowski algorithm is a 
gradient-based neural network algorithm in which the 
signal information is maximized (hence the name 
Infomax). Information can be expressed through the 
entropy H(y) of a transformed signal y=g(x), where g is 
a non-linear function and H(y) can be written as: 

 
[ ] )x(HJlnE)y(H +=  (7) 

 
The maximization of H(y) can be achieved by 

maximizing only the first term [ ]JlnE  , i.e. by changing 
the un-mixing matrix W. A neural gradient training 
algorithm is used to this purpose. 

CubICA: based on the Comon’s theory, the 
Cumulant Based Independent Component Analysis 
(CubICA) uses the diagonalization of cumulant tensors, 
taking the third-order and fourth-order cumulant tensors 
( )y(Cαβγ  and )y(Cαβγδ ) into account simultaneously to 
estimate the independence of source signals. 

TDSEP: the Temporal Decorrelation source 
SEParation (TDSEP) algorithm performs a 
simultaneous diagonalization of several time-delayed 
correlation matrices to estimate the statistical 
independence of the sources. Using time delays τ = 1, 2, 
3,..., the cross-covariance function τ

xC  of the signal is 
obtained: 
 

{ } T
sx

T AACC),t(x),t(xE ττ ==ττ  (8) 
 

MRMI-SIG: The MRMI-SIG algorithm [29] is a 
spatio-temporal ICA method that minimizes the mutual 
information of source signals written as the sum of 
(Shannon) marginal entropies minus the (Shannon) joint 
entropy: 
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1
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where mY  is the random variable that represents the mth 

estimated source and Y  is the M-dimensional random 
vector representing all estimated sources. To reduce 
estimator variance and to significantly decrease the 
computational complexity [30], MRMI-SIG replaces 
Shannon's definition of entropy, 1( )H Y , with Renyi's 
quadratic entropy, 2 ( )H Y . Renyi’s joint entropy is 
invariant to rotations, so the criterion reduces to a sum 
of marginal entropies, 
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where each of the marginal entropies is estimated using 
non-parametric probability distribution function (pdf) 
estimation.  

Whenever possible, we used the original MATLAB 
codes provided by the authors; the algorithms’ 
performances were tested on synthetic fMCG datasets. 

Simulated datasets: For synthetic data, the source 
signals are known, as well as the mixing matrix A. In 
this case, the un-mixing system W provided by the ICA 
algorithm can be assessed using the known mixing 
system A, and the unmixed signals yi can be evaluated 
using the known source signals si. This setting allows 
estimating separation performances of different 
algorithms. 

Five independent components were taken into 
account to represent real fMCG recordings: maternal 
and fetal cardiac signals, which were directly 
reconstructed from real datasets, environmental noise, 
maternal respiration and sensor spikes, the last three 
components being synthesized respectively as a 
gaussian signal, as a sine wave, and as a triangular 
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 function. Signal duration was 1 minute, and sampling 
frequency was set at 1 kHz. Different gestational ages 
were represented with fetal signals with amplitudes of 
0.3 pT, 0.8 pT, 1.4 pT and 2.0 pT, corresponding to 24, 
28, 32, 36 weeks of gestation on average. For each fetal 
signal amplitude, 3 synthetic fMCG datasets were 
prepared using appropriate mixing matrices, based on 
realistic source intensities, which permitted to reproduce 
clusters of 55 traces; the different combinations of 
components are shown in Table 1. Figure 1 shows 
examples of four synthetic fMCG recordings belonging 
to dataset 3, fetus at 36 weeks. 

 
Table 1: Summary of the signals used to produce the 
simulated fMCG datasets. 
 

 dataset 1 dataset 2 dataset 3 

maternal 
cardiac signal X X X 

fetal cardiac 
signal X X X 

environmental 
noise X X X 

maternal 
respiration  X X 

sensor spikes   X 

 
 

 
 
Figure 1: Segments of four simulated fMCG traces 
generated for dataset 3; the peak-to-peak amplitude of 
the fetal signal was 2.0 pT on average. Time is given in 
milliseconds. 
 

Simulated datasets were centered, and then PCA was 
used to whiten the datasets and to reduce their 
dimensions. Dimension reduction was required because 
some of the analyzed ICA algorithms are only able to 

estimate a square [n×n] un-mixing matrix W. Through 
dimension reduction we obtained a new set of n 
recordings and a new [n×n] mixing matrix A’ for every 
ICA algorithm, without any lack of information as to the 
independent components. 

Algorithms’ performances were evaluated through 
the accuracy with which each algorithm was able to 
separate components, with particular attention to the 
fetal ones. 

For each ICA algorithm, a vector containing the 
estimated source signals yi(t) was available. The 
distortion of a source signal si(t) in its estimate yi(t) was 
measured, and the accuracy of each ICA algorithm was 
then quantified in terms of signal-to-interference ratio 
(SIRi), which was defined as: 

  

2
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erfint
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where einterf was the interference term according to 

the method proposed by Gribonval et al. [31]. 
For each algorithm and each dataset, we calculated 

both the average SIR value among all separated 
components and the fetal SIR. 
 
Results 
 

The results of separation performance are given as a 
function of dataset identifier and weeks of gestation. For 
each item the SIR given was calculated with respect to 
the other item. Both the average SIR (averaged over all 
source estimates) and the SIR pertaining to only the 
fetal source are shown.  

For each algorithm, the average SIR (upper row) and 
the fetal SIR (lower row) are given as a function of the 
dataset identifier in Table 2. The values obtained for the 
average SIR are comparable with the exception of the 
Infomax algorithm, which performs poorly as soon as 
the maternal respiration source is included. The results 
for the fetal SIR indicate that FastICA performs 
noticeably better than the others. 

Table 3 shows the separation performances as a 
function of the number of gestational weeks. The 
average SIR of FastICA, CubICA, JADE, and MRMI-
SIG are comparable, whereas the results for TDSEP are 
slightly lower and Infomax is much lower. The fetal SIR 
results show a clear preference for FastICA. 

All algorithm reached convergence in an interval 
ranging from 0.04 seconds to 5.30 seconds. 

 
Discussion 
 

The outcomes of our study indicate TDSEP, MRMI-
SIG and Infomax as the less performing algorithms. 
Infomax presents the worst figures as soon as the 
maternal respiration source is included in the datasets, 
which is not surprising since maternal respiration is 
modeled with a sinusoid (bimodal distribution) while 
the Infomax implementation is usually tuned for 
unimodal super-Gaussian sources.  
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 Table 2: Average SIR (upper row) and fetal SIR (lower 
row) values for each analyzed ICA algorithm; figures, 
in dB, are given in function of the dataset complexity, 
expressed by the dataset identifier. 
 

 dataset 1 dataset 2 dataset 3 

FastICA 37,69 
44,57 

36,70 
42,82 

36,74 
39,32 

JADE 37,13 
32,45 

33,33 
31,79 

33,72 
31,53 

Infomax 34,08 
34,49 

3,19 
34,02 

4,16 
32,96 

CubICA 37,38 
33,03 

33,37 
31,93 

34,04 
31,96 

TDSEP 33,60 
29,18 

34,63 
28,94 

34,85 
28,87 

MRMI-SIG 37,97 
33,49 

37,69 
32,66 

37,58 
32,54 

 
The drop in Infomax performance is clearly visible 

in Tables 2 and 3, which show average SIR 
performances as a function of dataset identifier and 
weeks of gestation. On the other hand, Infomax 
performs quite well in terms of fetal SIR: this is possible 
because the fetal signal is super-Gaussian. 
 
Table 3: Average SIR (upper row) and fetal SIR (lower 
row) values for each analyzed ICA algorithm; figures, 
in dB, are given in function of fetal gestational age, 
expressed in weeks. 
 

Gestational 
weeks 24  28 32 36 

FastICA 37,04 
41,21 

37,04 
41,89 

37,05 
42,11 

37,05 
42,17 

JADE 34,53 
31,83 

34,74 
32,16 

34,80 
31,97 

34,80 
31,87 

Infomax 11,79 
33,83 

11,82 
33,82 

11,83 
33,81 

11,83 
33,82 

CubICA 34,77 
31,88 

34,91 
33,27 

35,39 
33,47 

34,83 
31,98 

TDSEP 31,43 
27,06 

32,33 
28,88 

32,34 
28,97 

32,32 
28,98 

MRMI-SIG 35,31 
29,89 

37,41 
32,79 

37,86 
32,84 

37,61 
32,93 

 
TDSEP and MRMI-SIG had difficulty extracting the 

fetal signal buried in noise when the energy of the fetal 
signal is low, which explains the results obtained for 
datasets representing acquisitions at 24 weeks of 
gestation. It is worth noting that TDSEP and MRMI-
SIG are the only algorithms considered herein that use 
temporal information for separation. 

Therefore, all the above-mentioned algorithms are 
sensitive to noise. 

On the other hand, FastICA, JADE and CubICA 
have performances that are fairly independent on noise 
(represented by the dataset identifier) and on gestational 
age (Tables 2 and 3); in fact, these algorithms always 
present the best overall performances. Moreover, they 
provide similar results in terms of average SIR and fetal 
SIR, although the FastICA algorithm always shows the 
best separation performance pertaining to the fetal SIR. 

With regard to the computation time, all algorithms 
were very fast. However, Infomax and MRMI-SIG were 
the slowest algorithms, while TDESP and FastICA had 
the best computation times for all datasets. 
 
Conclusions 
 

The results of this study provide a tool for the 
selection of the most appropriate ICA algorithm to 
process fMCG datasets in order to extract fetal cardiac 
signals with best signal quality. Among the analyzed 
algorithms, FastICA seems to have the best overall 
performances, as far as we could verify on the simulated 
datasets. 
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