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Abstract: The human subthalamic nucles (STN) is 
one of the main target regions for the implantation 
of deep brain stimulation electrodes for the 
treatment of Parkinson’s disease. Next to standard 
stereotactic methods, intraoperative microelectrode 
recordings help to identify this target region with a 
high degree of accuracy. However, a reliable and 
automatic online analysis of the intraoperatively 
recorded signals is hard to achieve. First attempts to 
automatically characterize STN-activity employ 
features calculated for so called spiketrains that get 
extracted from the raw recorded data by methods of 
spike detection and spike sorting. The results of this 
approach can severely depend on the user's 
experience and methodological preferences, and thus 
are subject to human error and inconsistency. We 
show in this contribution that alternatively a 
reliable, automatic classification of STN activity is 
very well feasible by employing statistical signal 
processing methods and unsupervised classification. 
The methods were tested on real microelectrode data 
recorded in the human STN. They got integrated 
into a novel 32-channel data acquisition system for 
intraoperative recordings, for which reliable, 
automatic classification methods are indispensable. 
 
Introduction 
 

Deep brain stimulation (DBS) has gained great 
importance in the treatment of movement disorders like 
Parkinson's disease. In order to elicit the desired 
therapeutic effect, the stimulation electrodes need to be 
implanted very accurately in the interesting target 
region during a functional stereotactic neurosurgery. 
The target region in the case of Parkinson's disease is 
one of Nucleus subthalamicus (STN), globus pallidus 
pars interna (GPi) or ventralis intermedius nucleus 
(VIM). In Europe, the deep brain structure STN is 
chosen most frequently because of the good therapeutic 
effects that are achievable. Preoperatively, 
neurosurgeons try to identify the target region on the 
patient's computertomography (CT) and/or magnetic 
resonance (MRT) images and plan a straight trajectory 
from the skull towards this region. However, because of 
the small size of the deep brain structures and the rather 
poor resolution of the imaging material, the target 
region can hardly be identified. Besides, localization 
based on image data gets corrupted intraoperatively 
because of physiologic effects like brainshift caused by 
the loss of intracerebral fluid. Because of these 

drawbacks microelectrode recordings are performed 
intraoperatively to verify the target region. Since each 
brain region is assumed to generate a distinct, neural 
activity pattern, a neurophysiological identification of 
the target region is possible. 

 
However, a reliable, automatic classification of the 

recorded signals and thus an automatic 
neurophysiological identification of the target region 
was not possible so far. Most data acquisition systems 
currently in use do not offer methods to solve this task. 
Instead, experienced neurosurgeons and 
neurophysiologists have to characterize the signals 
manually - a severe problem for less experienced teams. 

 
First attempts for automatic data analysis employ 

features calculated on spiketrains [1,2]. Spiketrains 
represent in a binary fashion the spiking activity of a 
single neuron over time. Methods of spike detection and 
spike sorting need to be applied in order to extract the 
spiketrains from the raw recorded data. Many 
approaches of spike detection and spike sorting require 
a high degree of user interaction and thus the results can 
again severely depend on the user's experience, and 
accordingly are subject to human error and 
inconsistency. Consequently, features like e.g. the firing 
rate of a neuron calculated for spiketrains from one and 
the same brain region by different groups can vary in a 
wide range and complicate an automatic classification 
[3,4,5,6]. Therefore there is a need for alternative 
methods that require a low degree of user interaction but 
provide for reliable signal features that can be used for 
an automatic classification of brain activity.  

 
Another reason that motivates the quest for 

automatic methods like this is the advent of data 
acquisition systems that are capable of processing a high 
number of channels simultaneously. In the framework 
of a project funded by the German Ministry of 
Education and Research a novel data acquisition system 
was developd that supports intraoperative recordings 
with a new 32-channel probe [7,8,9,10]. Data 
acquisition systems currently available only support up 
to 5 channels. Concerning these systems there is no 
urgent need to replace a manual inspection or a semi-
automatic classification of data requiring a high degree 
of user interaction. Experienced neurosurgeons and 
neurophysiologists are able to characterize this number 
of channels. But obviously the same cannot be true for 
32 channels. 
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 Materials and Methods 
 

Data acquisition: The presented methods were 
tested on data originating from recordings performed 
during stereotactic implantations of electrodes for deep 
brain stimulation in the subthalamic nucleus of six 
patients suffering from Parkinson's disease at the 
University-Hospital Hamburg-Eppendorf. All patients 
gave free and informed consent concerning the 
intraoperative microelectrode recordings. Spontaneous 
neural activity was recorded using conventional 
tungsten single-electrodes (microtargeting electrode 
291A; FHC, Bowdoinham, USA; impedance 0,5-1,5 
MΩ) on up to 4 parallel trajectories. A 4 channel 
microelectrode recording unit (Leadpoint®; Medtronic, 
Inc., Minneapolis, USA) was employed for visualization 
and permanent storage of the data. Signals were 
bandpass-filtered between 500 and 5000 Hz and were 
digitized at a sampling rate of 24 kHz. Recording 
sequences lasted typically between 0,5 and 5 minutes. 
Signals alongside the trajectories were classified by an 
experienced neurophysiologist into one of two classes: 
STN-signal or non-STN-signal originating from a 
neighbouring brain region. 

Data analysis: Data were analyzed post surgery with 
the help of the Matlab software package (Mathworks, 
Inc., Natick, USA). Instead of extracting spiketrains 
from the data and analyzing them, we calculated 
different statistical measures for the raw signals [11]. 
The following list gives names and alternative names of 
the features and the abbreviations that are used 
throughout the text and figures.  

• first moment (arithmetic mean, Sigm) 
• second moment (power, Sigm2) 
• third central moment (skewness, Sigz3) 
• fourth central moment (kurtosis, Sigz4) 
• maximum amplitude (Sigmax) 
• minimum amplitude (Sigmin) 
• median amplitude (Sigmed) 
• root mean square (RMS) 
• entropy (Ent) 
• frequency at peak in power spectral density 

estimate (maxF) 
• P250-2500 (PSD) 
This initial set of commonly used features in 

statistical signal processing was computed for signal 
stretches of 30 second duration. The first and second 
moment were calculated according to 

 

m p
1
N n 0

N 1

x n p  
 

where N denotes the number of samplepoints of signal 
stretch x(n) and p equals 1 or 2, respectively. Central 
moments were computed as  
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where p equals 3 or 4 respectively, and m1 denotes the 
first moment. The central moments were normalized by 
the square root of the p-th power of the variance z2. The 
median amplitude was computed for the absolute 
amplitude values. Entropy was calculated based on the 
amplitude histogram according to the equation  

 

H
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Here, hi denote the relative occurrences of the 

quantized amplitudes. In this case m equals 4096 
because of the 12 bit digitization. ld denotes the 
logarithm to the basis 2. 

The last two features mentioned were calculated on 
the basis of an estimate of the power spectral density of 
the signals. For estimating the power spectral density, 
we employed the Welch method. Signal stretches of 
4.76 seconds got divided into 7 windows of 0.68 
seconds in length, overlapping by 50 percent. The 
employed window was the Hamming window. The 
value that is referred to here as PSD was introduced by 
Pesenti et al. [12] in a similar fashion. For this value, the 
values in the frequency band from 250 Hz to 2500 Hz 
get summed up. 

Among this initial set of features those features were 
to be selected, that are discriminative with respect to the 
task of distinguishing signals recorded in the STN from 
signals recorded in neighbouring brain regions. Because 
the recorded signals are random signals, the calculated 
signal features are random numbers as well. The 
question at hand was to decide, which features show a 
different distribution when calculated for STN-signals 
compared to when calculated for non-STN-signals. For 
this purpose Wilcoxon rank sum tests were conducted. 
We chose this non-parametric test because of the small 
size of the random samples. When the microelectrode is 
introduced into the brain along one trajectory, 
recordings at about 20 different positions are performed. 
Some of the recording positions are within STN, others 
in neighbouring brain regions. Based on the manual 
classification by the experienced neurophysiologist we 
knew which signals were recorded in STN or an 
alternative brain region and could build random samples 
for features calculated for STN-signals or non-STN-
signals accordingly - sometimes comprising only a few 
values. We conducted 12 Wilcoxon rank sum tests for 
data calculated on 12 trajectories that definitely passed 
the STN.  

Unsupervised classification: Features found to be 
discriminative were used as input for unsupervised 
classification with the k-means classifier. Two classes 
were to distinguish: STN-activity and neural activity of 
adjacent brain structures. We used random initialization 
to define initial cluster centers. 

 
Results 

 
The results of the Wilcoxon rank sum tests for the 

12 investigated trajectories are summarized in Figures 1 
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 and 2. The trajectories are numbered from 1 to 12 on the 
abscissas. The investigated features are denoted on the 
ordinates. The connecting lines are intended to support 
readability. In the subfigures of Figure 1, a H-value of 1 
indicates that the respective feature denoted at the 
ordinate has a significantly different distribution when 
calculated for STN-signlas on the respective trajectory 
compared to when calculated for non-STN-signals on 
this trajectory. The P-values in Figure 2 indicate how 
reliable the obtained results are - the lower the P-value, 
the lower the probability of error.  

 
 

 
 

Figure 1: Results of Wilcoxon rank sum test (H-value) 
for 12 trajectories. For details see text. 

 
The presented results indicate, that the power, the 
median amplitude, the entropy, the rms value and the 
PSD value show a significantly different distribution 
when calculated for STN-signals compared to when 
calculated for non-STN signals on the majority of 
trajectories. Features like the arithmetic mean, statistical 
moments of higher order, the maximum or the minimum 
amplitude do not show a significantly different 
distribution for STN-signals. They can hardly be used to 
identify STN-activity. 

The histograms in Figure 3 indicate the distributions 
of the five features that were found to be most 
discriminative. For these histograms we generated two 
samples, one comprising the respective feature 
calculated for STN-signals on one of the 12 trajectories, 
the other one comprising the respective feature 
calculated for non-STN-signals. Obviously the features 
take higher values when calculated for STN-signals. 
This observation is explicable with an increased level of 
neuronal background noise in the STN compared to 

other brain regions and high spiking activity of STN 
neurons. 
 

 
Figure 2: Results of Wilcoxon rank sum test (P-value) 
for 12 trajectories.  
 

 
 

Figure 3: Distribution of feature values calculated for 
STN-signals (yellow) and signals originating from 
neighbouring brain regions (blue). The value ranges are 
denoted on the abscissas, the relative occurences on the 
ordinates. Each time 100 bins were used. 
 
The discriminative features Sigm2, Sigmed, Ent, RMS 
and PSD were used as input for the unsupervised k-
means classification. Figures 4 and 5 show the results of 
a one-dimensional automatic classification when only 
the entropy or the median amplitude, respectively, is 
taken as input and compare it against the manual 
classification by the experienced neurophysiologist. The 
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 results were obtained for data recorded on one trajectory 
from one patient - the same one in both figures. On the 
ordinates, the individual recording positions along the 
trajectory are denoted in µm. Negative numbers indicate 
positions above the planned target point at 0 µm, 
positive numbers indicate positions below the planned 
target point. The black horizontal lines indicate the 
result of the manual classification. Signals recorded at 
positions between -6000 µm and -500 µm were 
characterized as STN-activity by the neurophysiologist. 
The color of the stars indicates the result of the 
automatic classification, where the color itself does not 
have a meaning. 
 

 
 

Figure 4: Comparison of automatic and manual 
classification results. For automatic classification the 
entropy feature was used. The entropy values at the 
respective recording positions are given in bit on the 
abscissa. Ordinate gives a measure for the depth of 
recording position. Distance between lines was found by 
a neurophysiologist to represent STN (see text). 

 

 
 

Figure 5: Comparison of automatic and manual 
classification results. For automatic classification the 
median amplitude feature was used. The median 
amplitude values at the respective recording positions 
are given in µV on the abscissa. 

 
In both figures, manual and automatic classification 

results show a high degree of agreement. When 
regarding entropy (Figure 4), only one misclassification 

is observed at 1800 µm below the planned target point. 
When regarding the median value (Figure 5), there is an 
exact agreement between automatic and manual 
classification.  

The results presented in Figures 4 and 5 were 
obtained on one of four parallel trajectories from the 
same hemisphere of one patient. Automatic 
classification results obtained on all four parallel 
trajectories for the median value are shown in Figure 6. 
The trajectory regarded in Figures 4 and 5 corresponds 
to the lateral trajectory at xy-coordinates (-2,0). On this 
trajectory, the two red plains indicate the corresponding 
manually and automatically determined borders of the 
STN. For the anterior (0,-2) and central (0,0) trajectory, 
automatic and manual classification results differ by 
only one position (equal to 500 µm), indicated by the 
blue and red plains. The lateral trajectory (0,2) does not 
pass the STN, and indeed there is no STN-activity 
automatically classified. 

 
 
Figure 6: Comparison of automatic and manual 
classification on 4 parallel trajectories. The recording 
position is indicated on the z-axis. The size of the 
ellipses indicates the value of the median calculated for 
the signal recorded at the respective position. Red plains 
indicate the automatic classification result, blue plains 
the manual classification result. 
 

Our test data contained 12 trajectories that were 
passing the STN. The classification results for these 12 
trajectories are summarized in Table 1. Results are 
given for power, median amplitude, rms value and 
entropy. Sensitivity indicates the percentage of correctly 
classified STN-activity of all STN-activity on the 12 
trajectories. That means 

 
sensitivity = TP / (TP+FN) 
 
where TP denotes the number of STN-signals that 

were classified as STN-signals and FN denotes the 
number of STN-signals that were classified as non-
STN-signals. Given the classification by the 
experienced neurophysiologist, e.g. 95% of STN-signals 
were also correctly classified automatically when 
regarding the entropy feature. However, since there are 
also sum false positive classifications, the percentage of 
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 correctly identified STN-borders ranges below the 
sensitivity values. The results show that entropy is the 
most suitable feature for automatic characterization of 
STN-activity. 

 
Table 1: Results of automatic classification of STN-
activity on 12 trajectories when using different features. 
“Correct borders” means that STN-entry and STN-exit 
of the microelectrode were correctly determined 
automatically.  
 

Statistical 
measure Sensitivity Correct 

borders 
Sigm2 52% 32% 
Sigmed 70% 53% 
RMS 71% 58% 
Ent 95% 68% 

 
Discussion 
 

The presented results show that an automatic 
characterization of human STN-activity is feasible with 
easy means. In order to extract discriminative features 
as input for classification routines it is not necessary to 
conduct error-prone spike detection and spike sorting 
and calculate features of spike trains. Instead, statistical 
measures calculated for the raw signals allow for a 
reliable automatic classification. The request for a low 
degree of user interaction is fulfilled as well. The 
statistical measures can be calculated without almost 
any user interaction. The user has only to decide once, 
how long the signal stretches should be on which to 
calculate the features. We made good experiences with 
signal stretches of 30 seconds in length. Parameters for 
how to estimate the power spectral density also have to 
be determined only once in the beginning. Presented 
results were obtained offline, but are in principle 
accessible for online analysis as well. 

All presented features are scalar values. This allows 
on the one hand for a clearly arranged visualization and 
on the other hand for easy comparisons. Calculated 
features can be stored in a database and can be 
compared against intraoperatively calculated features.  

The interesting question arises, whether the same 
features are suitable for characterizing activity of the 
alternative target regions GPi or VIM. Since we did not 
have manually classified signals from these regions at 
hand, this is work in progress. 
 
Conclusions 
 

The presented methods got incorporated into a new 
data acquisition system for 32 channels [7,8,9]. This 
navEgate data acquisition system allows for the 
simultaneous recording of 32 channels with a novel 
probe comprising 32 recording sites on one shaft system 
[10] (commercially available at ThomasRecording 
GmbH, Giessen, Germany). This way, a depth profile of 
neuronal activity becomes available at one glance. 

While preclinical studies of the system are on the way, 
we are convinced that the possibility to record neural 
depth profiles combined with our fast and reliable 
automatic data analysis methods will speed up 
intraoperative microelectrode recordings considerably, 
while providing direct benefit to the patient. To 
additionally assist less experienced teams, an 
electrophysiological database, the navEbase database 
[13], is integrated into the data acquisition software of 
the novel system. This database offers the possibility 
mentioned above to compare intraoperatively currently 
computed features against those stored in the database 
originating from different brain regions. This feedback 
from navEbase will assist teams in questionable cases. 
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