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Abstract: Gene expression profiles hold valuable 
information providing understanding for many 
cellular processes. The utilization of microarrays 
offers the possibility of monitoring gene expression 
for tens of thousands of genes in parallel. In this 
work, microarray data were used under the 
framework of a radial basis functions artificial 
neural network for the classification of two common 
types of cancer: acute myeloid leukaemia and acute 
lymphocytic leukaemia. The classification procedure 
is implemented according to a four-stage schema: 
neighbourhood analysis, selection of the informative 
genes, boosting and, finally, classification of the 
given tissue. To evaluate the proposed method we 
used previously reported data consisting of 72 
leukaemia samples. Our method seems to 
outperform other similar systems, since after being 
trained with only 12 samples, instead of 38 like all 
the other methods do, it manages to correctly classify 
the 59 out of the 60 samples, yielding a sensitivity of 
100% and a specificity of 94%. When ROC analysis 
is employed to evaluate the diagnostic approach, the 
area under the curve had a value of 0.99, 
approximately. 
 
Introduction 
 

Each tissue is characterized at a given time by a 
unique pattern of gene expression, which is called 
“expression profile” or “molecular signature”. These 
unique expression profiles of different tissues or of the 
same tissue under different experimental conditions 
hold valuable information which provides 
understanding and insight into many cellular processes. 
Microarray analysis provides the possibility of 
monitoring gene expression for tens of thousands of 
genes in parallel and is expected to significantly 
contribute to the development of efficient cancer 
diagnosis approaches. 

The main steps of this analysis include data 
normalization and filtering in order to establish the 
differential gene expression [1], dimensionality 
reduction [2] and finally, pattern recognition that will 
assign biological meaning to the expression profiles. 
Pattern identification demands further analysis of the 

microarray data, which includes gene identification [3], 
gene regulatory network modelling [4], clustering and 
classification. The last two are mainly implemented by 
machine learning approaches. 

Clustering techniques applied in microarray analysis 
include hierarchical clustering algorithms [5], self-
organizing maps [6], and graph theoretical approaches 
[7,8]. For the purpose of classification, the techniques 
applied were linear discriminant analysis [9-12], k 
nearest neighbour classifiers [13], support vector 
machines [14,15], self-organizing maps [16], boosting 
algorithms [7,16], decision trees [17,18], multilayer 
perceptrons [18] and others [19-23]. 

In the present work microarray analysis is combined 
with the use of Artificial Neural Networks (ANNs) for 
the classification of cancer. More specifically, 
probabilistic neural networks (PNNs) are employed to 
classify two types of cancer: acute myeloid leukaemia 
(AML) and acute lymphocytic leukaemia (ALL). For 
training and testing the method we used the dataset 
derived from [16], as well as, the same set of 
informative genes selected at this study. We also 
applied a simple boosting algorithm. Eventually, the 
developed diagnostic approach classified the two types 
of cancer indicating high accuracy of the method. 
 
Materials and Methods 
 
Microarray Analysis 

Microarrays allow monitoring of gene expression for 
thousands of genes, by conducting massively parallel 
hybridization experiments under particular experimental 
conditions and environments. Thus, they produce huge 
amounts of valuable data and assist in the identification 
of novel genes or associate genes within complex gene 
pathways [24]. The gene expression patterns derived 
from microarray hybridization experiments provide 
snapshots of the state of a living cell, which determine 
its biological behaviour (Figure 1). If we consider the 
fact that a human cell contains approximately 3 billion 
base pairs, which encode about 50,000 to 100,000 genes 
and only a fraction of these genes are expressed in any 
given tissue, instead of treating gene expression pattern 
from a given microarray experiment as a single data 
entity, we can examine one gene at a time across a 
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 biological process or a collection of biological samples 
(the gene expression profile). 

 

 

Figure 1: A microarray  
(Source: http:// plantgenomics.biology.yale.edu/). 

 
The analogy between biological sequences and 

microarray expression data is not directly evident. 
While a protein sequence can be represented as a string 
of letters drawn from an alphabet of twenty amino acids, 
microarray expression measurements are usually 
represented as a fixed-length vector of continuous 
values [25]. For cDNA arrays, each value is the 
logarithm of the ratios of the estimated abundances of 
mRNA in two tissue samples. A microarray experiment 
produces about 10,000 such ratios, each generally 
corresponding to a particular gene, so that gene 
expression patterns can be compared by determining the 
ratio of fluorescent intensities of the two dyes after 
hybridisation with the probes. This ratio, see Eq. (1), is 
the log ratio between the two intensities and provides 
the gene expression value [5,26]:  

)3(
)5(log_ 2 CyIntensity

CyIntensityExpressionGene = . (1) 

 
Classification Problem 

Leukaemia is a form of cancer that affects bone 
marrow and the production of white blood cells. The 
disease exists in several forms, but is always malignant. 
AML occurs when immature blood cells, the 
myeloblasts, fail to follow the differentiation, the 
process by which the healthy myeloblasts mature into 
white blood cells, platelets, and red blood cells. The 
failure of differentiation results in the accumulation of 
the myeloblasts in the bloodstream, where they 
eventually count more than healthy blood cells. From 
the bloodstream, the cancer can spread into the liver, the 
spleen, or any other organ in the body. AML is 
associated with chromosomal translocations, where 

genetic information on one chromosome switches places 
with information on another chromosome. Particularly, 
AML is associated with the t(8;21)(q22;q22) 
translocation, that occurs in 15% of patients with AML 
[16]. 

ALL occurs when the immature lymphocytes, or 
blasts, fail to develop into mature white blood cells, and 
accumulate in the blood stream and bone marrow. 
Those abnormal lymphocytes that cannot mature are 
often larger than the normal. The rapid reproduction of 
the abnormal lymphocytes results in high white blood 
cell counts, and low levels of red blood cells. ALL is 
also associated with certain chromosomal 
translocations: the t(12;21) (p13;q22) translocation that 
occurs in 25% of patients with ALL [16]. 

The fact that chemotherapy regimens for AML relies 
on a backbone of daunorubicin and cytarabine, while for 
ALL generally contains corticosteroids, vincristine, 
methotrexate, and L-asparaginase, indicates that a 
critical issue for the successful treatment is to 
distinguish ALL from AML. 

 
Classification Procedure 

The classification of leukaemia based on PNNs was 
implemented according to the schematic diagram shown 
in Fig. 2. First, neighbourhood analysis of the 
microarray data that include expression levels of 6,817 
genes is performed; this is followed by the selection of 
the informative genes (50 more representative ones); 
then the selection of the training and test sets according 
to a boosting algorithm takes place and, finally, the 
probabilistic neural network is applied for the the 
classification of the given tissue. 
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Figure 2: The four stages of the tissue classification 
procedure. 
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 Microarray Data 
In our work we used the data generated by a similar 

study in [16]. Their initial leukaemia training data set 
consisted of 27 ALL, and 11 AML, i.e. 38 bone marrow 
samples obtained from acute leukaemia patients at the 
time of diagnosis before chemotherapy. Samples were 
randomly selected from the leukaemia cell bank based 
on availability. The 27 ALL samples were obtained 
from ALL childhood patients treated on Dana-Farber 
Cancer Institute (DFCI) and the 11 adult AML samples 
derived from the Cancer and Leukaemia Group B 
(CALGB) protocols between 1980 and 1999. All the 
samples were selected regardless to cytogenetics, 
immunophenotype, or other molecular features. The 
RNA derived from bone marrow mononuclear cells was 
hybridised to high-density oligonucleotide microarrays, 
that included probes for 6,817 human genes and a 
quantitative expression level was obtained for each 
gene. This dataset is available at: http://www.broad. 
mit.edu/cgi-bin/cancer/datasets.cgi. 

 
Neighbourhood Analysis 

In the first stage of the classification procedure the 
identification of the genes, whose expression pattern is 
strongly correlated with the class distinction of the 
leukaemia samples to AML and ALL, is realised [16]. 
The 6,817 genes are sorted by their degree of correlation 
and the “neighborhood analysis” method is employed to 
establish whether the observed correlations are stronger 
than would be expected by chance. 

Each gene is represented by an expression vector 
v(g)=(e1, e2, ..., en), where ei denotes the expression 
level of gene g in the i-th sample in the initial set S of 
samples. An ideal expression pattern c=(c1, c2, ..., cn), 
represents the class distinction where ci=1 or 0 
according to whether the i-th sample belongs to class 1 
or class 2. P(g,c) was the measure of correlation used, in 
a way that large values of ),( cgP  indicate a strong 
correlation between the gene expression and the class 
distinction, while the sign of P(g,c) being positive or 
negative corresponds to g being more highly expressed 
in class 1 or class 2. The sets of genes such that 
P(g,c)=r and P(g,c)=2r are defined as neighbourhoods 
N1(c,r) and N2(c,r) of radius r around class 1 and class 
2, respectively. If the number of genes within the 
neighbourhoods is large, many genes will have 
expression patterns closely correlated with the class 
vector. 

 
Selection of the informative genes 

When the above method of neighbourhood analysis 
was applied to the 38 acute leukaemia samples, roughly 
1,100 genes were more highly correlated with the AML-
ALL class distinction than would be expected by 
chance. From the 1,100 genes the 50 were chosen 
arbitrarily, and were called the “informative genes” 
[16]. Those could be the genes we must use for the 
classification of our samples, as well. 

 
 

Boosting 
One approach to boosting is the heuristic selection 

of a small number of prototypes that performs equally 
well with the complete dataset [27]. Bearing this in 
mind, we selected the samples, as well as, their number, 
following a try-and-error approach. Specifically, in our 
study, in contrary with [16], we did not split the 72 
samples of the overall dataset into 38 training and 34 
test samples. We trained the system with different 
number of samples all including the 50 genes selected 
from the work in [16] with neighbourhood analysis. 

 
Probabilistic Neural Networks 

An artificial neural network simulates multiple 
layers of simple processing elements, the neurons. It is 
usually composed of a great number of interconnected 
artificial neurons that are simplified models of their 
biological counterparts. The neurons are linked to many 
of its neighbours and the coefficients of connectivity 
represent the strengths of these connections. The 
components of neural networks are modelled according 
to the structure of the brain and in general neural 
networks have a strong similarity to the biological brain. 

We used radial basis functions ANNs for the 
classification of the two types of cancer, AML and 
ALL. In a radial basis network the input to the transfer 
function (activation of a neuron) is the vector distance 
between its weight vector w and the input vector p, 
multiplied by the bias b. The radial basis function has a 
maximum value equal to 1 when its input is 0. As the 
distance between w and p decreases, the output 
increases. Thus, a radial basis neuron acts as a detector 
that produces 1 whenever the input p is identical to its 
weight vector w. As for the bias b, it allows the 
sensitivity of the radial basis neuron to be adjusted [28]. 
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Figure 3: Architecture of the Probabilistic Neural 
Network. 
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 Our work is based on probabilistic neural networks 
which belong to a subclass of radial basis functions 
ANNs and can be used for classification problems. 
When an input is given, the first layer computes 
distances from the input vector to the training input 
vectors, and produces a vector whose elements indicate 
how close the input is to a training input. The second 
layer sums these contributions for each class of inputs to 
produce a vector of probabilities. Finally, a “compete” 
transfer function on the output of the second layer picks 
the maximum of these probabilities, and produces 1 for 
that class and a 0 for the other classes [28]. The 
architecture for the ANN is shown in Fig. 3. It should be 
noted that the input to the PNN are the intensity values 
of each gene for each sample derived from the 
microarray experiment image and the output is the 
classification of the samples into the two cancer classes, 
AML and ALL. 
 
Results 
 

The sensitivity (Se) and specificity (Sp) measures 
were employed to assess the performance of the 
proposed classifier. We started training the system with 
2 samples, and following a resampling procedure (i.e. 
the boosting algorithm) we continuously increased the 
number of samples by adding a pair of samples at a 
time, one AML and one ALL. The pairing of the 
samples was adopted in order to reduce during training 
the bias in one of the two classes. We observed that 
after 12 samples, there is no change in the results (Sp 
drops since the number of test samples decreases), fact 
that proves that we can train the system quite well with 
only 12 samples. From the 72 samples the remaining 60 
were used for testing, and as seen in Table 1, only one 
out of the 60 was misclassified. 

 
Table 1: Classification results for different number of 
training samples. 
 
Training 
samples TP TN FP FN Se (%) Sp (%) 

6 44 18 4 0 100 81,82 
8 43 18 2 1 97,73 90 

10 42 17 1 2 95,45 94,44 
12 43 16 1 0 100 94,12 
14 43 14 1 0 100 93,33 
16 42 13 1 0 100 92,86 
18 41 12 1 0 100 92,3 
20 39 12 1 0 100 92,3 
30 29 12 1 0 100 92,3 
40 22 9 1 0 100 90 
50 15 6 1 0 100 85,71 
 
The Se and Sp values (those produced from the 12- 

sample training set) were used for the estimation of the 
ROC curve shown in Figure 4. The estimated area under 
curve was very high (AUC = 0.9898), fact that proves 
the high performance of the proposed classification 
method. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Receiver Operating Characteristic (ROC) 
curve. 
 
Discussion 
 

A new method was developed based on ANNs for 
tissue classification purposes using gene expression data 
derived from a microarray experiment. More 
specifically, we employed PNNs which are a type of 
radial basis functions ANNs. The proposed method aims 
at classifying two types of cancer: AML and ALL, and 
proved to be very reliable, since it misclassified only 
one sample from the test set. 

As already has been discussed in [16] the original 72 
samples were split in a 38-training set and a 34-test set. 
Their neighbourhood analysis correctly identified 29 
samples with strong predictions, and misclassified 2 of 
the other 5 samples that had weak predictions. In [10] 
linear discriminant analysis was employed for the same 
classification problem. Following the approach of leave-
one-out-cross-validation, they selected 8 genes that 
yielded no misclassifications. Utilizing a similar 
methodology in [11] and specifically Fisher linear 
discriminant analysis combined with forward stepwise 
feature selection again all the samples were correctly 
classified. It should be noted that cross validation was 
also employed in this work. Likewise, step-wise cross-
validated discriminant analysis was used in [12] which 
was tested on an independent dataset and managed to 
correctly classify 32 of the 34 samples. On the other 
hand, support vector machines [14] produced 
classification results that ranged from 30-32 accurate 
predictions on the same 34-sample dataset. Their results 
depend on the number of genes they used that varied 
from 25 - 1000. In [19] the concept of emerging patterns 
was employed for the classification of the AML-ALL 
dataset. They used only one gene (zyxin) for 
classification and managed to correctly classify 31 of 
the 34 test samples. Between group analysis of 
microarray data was another technique proposed in [20], 
which identified 25 discriminating genes. Those were  
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 Table 2: Classification performance of various methods on the same dataset with leukaemia samples. 
 

Method 
Number of 
informative 

genes 
Accuracy (%) 

Linear discriminant analysis [10] 8 72/72 100 
Fisher linear discriminant analysis & Forward stepwise selection [11] 2 72/72 100 
Step-wise cross-validated discriminant analysis [12] 2 32/34 94 
Support vector machines [14] 25-1000 30-32/34 88-94 
Weighted voting [16] 50 29/34 85 
Emerging patterns [19] 1 31/34 91 
Between group analysis [20] 25 30/34 88 
Independently consistent expression discriminator [22] 16 34/34 100 
Bayesian model averaging [23] 20 32/34 94 
Probabilistic neural network 50 59/60 98 

 
used for the tissue classification, yielding a correct 
classification of 30 to 33 (depending on the filtering of 
the genes) out of the 34 samples. In [22] a different 
approach was applied, called independent consistent 
expression discriminator, and used 38 samples to 
develop a weighting-voting system that selected 16 
genes, instead of the 50 that were selected in [16]. Their 
method correctly identified all the 34 test samples. 
Finally, Bayesian model averaging [23] after selecting a 
set of 20 genes classified correctly 32 of the 34 samples. 

Our method seems to outperform the above systems 
(Table 2), since it manages to correctly classify 59 of 
the 60 samples, after being trained with only 12 
samples, instead of 38 like all the other methods do. The 
one misclassification is false positive, which in 
classification problems between normal and cancerous 
tissues false positives are considered to be tolerable. 
Thus, the proposed method will perform even better in 
that type of discrimination problems. 

During the training and testing of the system we 
observed that there are some samples in the dataset that 
are more discriminative than the rest and have to be 
presented first for training in the ANN classifier. More 
specifically, the samples in the following order {1, 72, 
38, 68, 28, 50, 37, 64, 32, 66, 35, 58} gave the best 
results, while a different order would decrease the 
classification performance. This has to do with the 
architecture of the PNN and the small number of 
samples in the employed dataset. A preprocessing stage 
(for example the application of a k-nearest neighbour 
algorithm) would automate the boosting procedure 
yielding a fully automated classification system.  

Finally, in the latest studies of cancer classification, 
the number of genes that are used as the set of the 
informative genes is gradually reducing for the same 
dataset. In particular, there are studies that attempt to 
discriminate the two types of cancer by using 25, 16, 8, 
5, or even only one gene. Given the fact that their 
performance is comparable with other more reliable 
methods [14,16] and following the principle of Okam’s 
razor we should also apply our method on samples with 
smaller number of genes. 
 

Conclusions 
 

We presented a new method for leukaemia 
classification based on PNNs and microarray data. The 
proposed method proved to be very reliable since it 
misclassified only one sample out of 60. Furthermore, it 
can be trained with a minimal set of samples, in the 
leukaemia example with only 12, which is very 
desirable in classification problems where the dataset is 
limited as is the case with the microarray data. Further 
testing of the proposed PNN diagnostic approach with 
other types of cancer will fully reveal the overall 
efficacy of the method. 
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