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Abstract: Latent factors, though not observable from 
the experiments, are generally of existence and 
potentially play influential roles on the gene 
expressions of interest. While various approaches 
have been proposed to estimate the genetic network 
from a set of microarray data, the influence of the 
latent factors has not been taken into account by 
most of previous reconstruction algorithms. As a 
consequence, the gene-gene interactions may be 
over- or under-estimated, even with a correct 
network topology.  To account for the effects of 
latent factors, a new gene network reconstruction 
algorithm based on ICA is proposed in this paper.  
The expression level of each gene is assumed to be a 
linear function of latent factors and observable gene 
expressions. The latent factors are extracted from 
the observed gene expressions by using independent 
component analysis, the cost function of which is the 
kurtosis of the latent signals regularized by the mean 
squared errors between the predicted and observed 
gene expressions. AIC is used as the cost function to 
determine the number of latent factors and the 
network topology. The optimal solutions are sought 
by fast fix-point method.  To evaluate the 
performance, the proposed algorithm has been 
validated by using simulated time-course data. 

Introduction 

Reconstruction of genetic regulatory networks has 
emerged as one of the most exciting and challenging 
task in postgenomic biology.  With the large-scale 
genetic expression data produced by microarray 
technologies, various approaches have been proposed to 
reconstruct the genetic regulatory networks, such as 
Boolean networks [1-2], graph models [3], Bayesian 
networks [4-6], additive regulation models [7-10], and 
so on.   

As one of the first approaches to modeling genetic 
regulation, Boolean networks [1-2] simplify the gene 
expression into two states, i.e., on or off, and attempt to 
describe the logic of gene interactions.  The 
advantages of the Boolean networks consist in their 
noise immunity and weak statistical requirement on the 

amount of expression data.  However, Boolean 
networks have been criticized for the unrealistic 
modeling of continuous gene expressions into binary 
states.  Even though Boolean networks may be 
generalized to logical networks with multiple states [11], 
the limited ability of logical networks in describing real 
gene interactions remain as an intrinsic problem. 

Instead of shooting for a quantitative 
characterization of gene interactions, graph models [3] 
aim to build a directed graph or a digraph to describe 
the gene relations.  Compared to Boolean networks, 
graph models offer an even simpler description of the 
gene interactions.  More specifically, graph models 
reveal only structural information of genetic networks 
rather than how genes interact with each other.  
Basically, graph models share similar pros and cons 
with Boolean networks.   

Bayesian networks attempt to capture the causal 
relations among genes by encoding the conditional joint 
probability distribution of gene expressions.  The 
Bayesian network is an attractive approach to modeling 
genetic regulatory network because of its solid basis in 
statistics, which enables it to handle the stochastic 
aspects of noisy microarray measurements in a natural 
manner.  Moreover, it can be used even with 
incomplete data.  However, Bayesian networks suffer a 
major drawback that they cannot deal with feedback 
loops generally existing in genetic regulation. 

Additive regulation models refer to the genetic 
network models using weighted sums as the core, as 
suggested by D’haeseleer [12] to unify those similar 
ideas with different names.  Some typical examples of 
additive regulation models are linear model [7,10], 
weighted matrices with nonlinear dose-response curve [8] 
and recurrent neural networks [9].  Additive regulation 
models represent a parametric approach to quantify the 
dynamic behavior of genetic interactions, e.g., 
dependencies between genes at different time instances.  
Theoretically, additive regulation models stand at a better 
position to characterize genetic interactions more 
realistic than Boolean networks and graph models for 
their continuous nature of data representation.  
Nevertheless, the limited data provided by microarray 
measurements have been generally insufficient to derive 
the parameters involved in the additive regulation models, 
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 a problem known as curse of dimensionality.  Although 
the dimensionality problem may be alleviated by 
reducing the number of parameters, e.g., clustering gene 
expression profiles [13-14], using Boolean networks [15] 
to define the structure of gene networks, etc., the number 
of parameters may still remain too many to be estimated 
with a high confidence. 

While each class of genetic networks has been shown 
to be informative for understanding underlying gene 
relations, most of them share a common potential 
deficiency in elucidating genetic interactions, namely, 
the overfitting problem.  The overfitting problem arises 
from the fact that the microarray data provide only the 
gene expression levels, while genetic interactions may 
involve participants other than mRNAs, such as proteins.  
Moreover, most genetic regulatory networks 
reconstructed in previous studies considered only a 
subset of genes.  As a result, the unobserved factors may 
be incorrectly embedded in the overfitted gene networks 
containing only the interested genes. 

Materials and Methods 

Gene expression is regulated by complex 
interactions which may be co-effect of many underlying 
factors. In the recent literatures, although relation 
networks between genes can be estimated by many 
algorithms developed to reconstruct the gene network 
topology, most take gene and gene interactions into 
account simply without considering the underlying 
latent factors which can not be observed from 
large-scale microarray data such as temperature, enzyme 
and glucose concentration , etc. 

Independent component analysis (ICA) is an 
algorithm widely used to extract the latent features 
underlying the observed signals. The observed signals in 
ICA are modeled as a linear mixture of unobservable 
factors, each of which is called an independent 
component (IC). The latent variables are assumed as 
nongaussian and mutually independent. To reconstruct a 
genetic regulatory network involving relations within 
genes and interactions between genes and latent factors, 
linear regression is used to estimate the part of causal 
relation among genes and the effects of underlying 
factors are drawn by ICA. It is assumed that gene-gene 
interaction is time-independent. 

Links extracted by partial correlation are used to 
estimate the regulatory relation among genes. By 
incorporating the capability of ICA in extracting latent 
factors, the proposed gene reconstruction algorithm is 
formulated as a constrained optimization problem 
defined as 
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where J is the negative of the absolute value of kurtosis, 
which is a measure of nongaussianity of ICs, Λ  the 
sum of square errors between the observed and 
predicted gene expressions, is  the ith latent factor (IC), 
A mixing matrix of latent factors, B weighting matrix of 
gene-gene interaction, T the number of observed data 
for each gene, and ν  a Gaussian random variable. 

The constrained optimization problem is converted 
to an unconstrained optimization problem by using a 
Lagrange multiplier and solved by fast fix-point 
iterative algorithm used to find the optimal solution 
more efficiently than the gradient method. The 
unknowns to be solved include the latent factors s, 
mixing matrix A and interaction matrix B. 

Network topology determination is the most 
important and challenging step throughout the gene 
network reconstruction task. Links connecting genes are 
determined by partial correlation. de la Fuente [18] 
suggested that partial correlation be used to gain the 
meaningful correlation between two variables. Different 
from correlation, partial correlation determines the 
association between two variables when other variables 
are constrained. It is the correlation between the 
residuals of the interested variables as the common 
factors are adjusted. For instance, the real association 
between variables i and j, which are both correlated to 
variable k, is the Pearson correlation between the 
residuals of linear regressions of i and j when k is 
conditioned, respectively [18,19]. 

Accurate ICs estimation depends on the reliable 
relationships among genes. On the other hand, incorrect 
IC estimation would result in erroneous genetic network. 
To overcome this issue, an Expectation-Maximization 
algorithm is proposed to derive the ICs and network 
topology iteratively.  In the E-step, given model 
parameters, including the network topology, mixing 
matrix A and weighting matrix B, the ICs are sought by 
solving the constrained optimization problem posed in 
Eq. (1) using the fix-point method. In the M-step, given 
the latent factors, i.e., the ICs, the model parameters are 
determined by optimizing the Akaike information 
criterion (AIC) of the reconstructed gene network based 
on partial correlation and linear regression. 

Results 

To demonstrate the performance of the proposed 
gene network reconstruction algorithm, Fig. 1 illustrates 
a gene network with 6 observable genes and 2 latent 
factors. The number on the directed link from gene ig  
to gene jg  indicates the influence of gene i on gene j, 
which corresponds to ),( ijB . Similarly, the number on 
the directed link from latent factor iF  to gene jg  
indicates the influence of latent factor i on gene j, which 
corresponds to ),( ijA .  
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Figure 1:  The simulation model for performance 
evaluation of the proposed gene network reconstruction 
algorithm, in which 1g ~ 6g  are six observable gene 
expressions and 1F  and 2F  are two latent factors. 
 

In the first experiment, we show that given the true 
network topology, the proposed algorithm is able to 
derive the latent factors, mixing matrix A and weighting 
matrix B very close to the true setups.  For example, 
the time-course data of these two latent factors 
estimated by the proposed algorithm and those of the 
true latent factors are plotted in Fig. 2, which are 
denoted by solid curves and curves marked by ‘x’, 
respectively.  It is clear that both estimated latent 
factors reasonably resemble the true ones.   
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Figure 2: Two true (marked by x) and estimated (solid 
curve) latent factors in a simulation, given the true 
gene-gene network topology. 
 
Table 1: The estimated and true mixing matrices A and 
interaction matrices B by a linear regression method. 
 

 Interaction matrix B Mixing 
matrix A 

 1g  2g  3g  4g  5g  6g  1s  2s  

1g  .58 (.5) .65 (.6)     0 (.5) 0 (0) 

2g   .80 (.5) .30 (.4)    0 (.7) 0 (0) 

3g    .81 (.5) -1.02(.4)1.48(.5)  0 (.7) 0 (0) 

4g      .95 (.6)  0 (0) 0 (.6) 

5g      .91 (.5)  0 (0) 0 (.7) 

6g     1.39 (.5)  -.07(.4) 0 (0) 0 (.5) 

Table 1 shows the mixing matrix A and weighting 
matrix B estimated by a conventional linear regression 
method.  The left part of Table 1 shows the weighting 

matrix B estimated by linear regression.  As contrast, 
Table 2 lists the estimated and true mixing matrics A 
and interaction matrics B.  The true values are given in 
the parentheses. In fact, the root mean squared error 
between the observed and predicted gene expressions is 
only 0.03. Compared to Fig.1, the estimated weight on 
each link is quite close to the true one.  

 
Table 2: The estimated and true mixing matrices A and 
interaction matrices B by the proposed approach. 

 
 Interaction matrix B Mixing 

matrix A 

 1g  2g  3g  4g  5g  6g  1s  2s  

1g .51 (.5) .55 (.6)     .56 (.5) -.13 (0)

2g  .41 (.5) .38 (.4)    .78 (.7) -.18 (0)

3g   .43 (.5) .54 (.4) .42 (.5)  .78 (.7) -.18 (0)

4g     .61 (.6)  .07 (0) .52 (.6)

5g     .51 (.5)  .08 (0) .60 (.7)

6g    .52 (.5)  .4 (.4) .06 (0) .43 (.5)
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Figure 3: Two true (marked by x) and estimated (solid 
curve) latent factors without given true network. 
 
Table 3: The estimated and true mixing matrices A and 
interaction matrices B by the proposed approach 
without prior information on the true network. 
 

 Interaction matrix B Mixing 
matrix A 

 1g  2g  3g  4g  5g  6g  1s  2s  

1g .46 (.5) .33 (.6)     1.31(.5) 0 (0) 

2g .01(0) -.01(.5) .47 (.4)    1.86(.7) 0 (0) 

3g  -.5(0) .49 (.5) .97 (.4) 0 (.5)  1.96(.7) 0 (0) 

4g    -2.11(0) 4.66(.6) .12(0) 0 (0) 1.85(.6)

5g    -1.56(0) 4.67(.5)  0 (0) 2.33(.7)

6g    -1.26(.5) 3.39(0) .5 (.4) 0 (0) 1.54(.5)

 
In the second experiment, we assume no prior 

information on network topology and attempt to 
reconstruct the simulated network using the proposed 
algorithm. The preliminary results show that the true 
positive rate (i.e., the ratio of the number of identified 
true links to the number of total true links) can be as 
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 high as 91% and the accuracy can be higher than 81% . 
The mixing matrix A and weighting matrix B of the 
second experiment are summarized in Table 3. Fig. 3 
shows the comparison between true and extracted latent 
factors. 

Discussion 

It is clear that even with a correct network topology, 
the estimated weight of each link is quite different from 
the true one using the linear regression method.  More 
seriously, some links even have wrong signs for the 
estimated weights.  It means that gene ig  might be 
originally an activator of gene ig , but concluded as a 
repressor instead. The accuracy of the proposed 
algorithm is higher than 80%.  However, some of the 
derived link weights are quite different from the real 
ones. 

Conclusions 

A new gene network reconstruction algorithm 
accounting for the effect of latent factors is proposed. It 
has the advantage over Bayesian network that no model 
assumption is needed for the gene-gene interaction. 
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