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Abstract: Methods for automatic detection of bolus 
arrival time in dynamic MRI studies (Dynamic 
Susceptibility Contrast) are presented. The first 
method uses gamma-variate function fitting to data 
and thresholding. The second method is based only 
on original signal thresholding. Results achieved for 
clinical data are presented and discussed. Presented 
methods are implemented in automatic maps 
synthesis software which is prepared for clinical 
trials. 
 
Introduction 
 
 Parametric imaging become more and more 
popular. This includes Dynamic Susceptibility Contrast 
DSC-MRI [1], ASL MRI [2], dynamic PET/SPECT [3], 
dynamic active thermography [4], etc. Parametric 
images represents values of reconstructed parameters 
for assumed tissue/activity model. This extends the 
structural imaging towards functional imaging. 
Qualitative parametric imaging could be extremely 
useful technique, however quantitative imaging could 
be even much more powerful, especially using the same 
modality as used for structural imaging. This is a reason 
why DSC-MRI is an active area of research in 
quantitative cerebral perfusion. In this work we are 
investigating the automatic detection of bolus arrival 
time methods.  
Automatic detection of BAT is important for automatic 
parametric imaging using DSC-MRI. Reliable detection 
of BAT can be used in an Arterial Input Function – AIF 
- detection (including local AIFs) and as a valuable 
clinical indicator of blood transport problems.  
 
 
MRI-DSC imaging 
 

In the DSC-MRI brain studies, after injection of a 
bolus of the contrast agent (Gd-DTPA), series of images 
are measured (fig. 1).  

 

 
Figure 1: Measured series of images: a composition of 
1D signals S for pixel number p. 
 

This time-sequence data presents local voxel activity 
of the contrast (blood) flow and it’s distribution. It is 
assumed, that measured MRI signal values are 
proportional to the contrast concentration [5]: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

−=
0

)(
ln1)(

S
tS

TEk
tC c

c , 
(1)

 
where:  

C(t) – the tracer concentration in time,  
TE – echo time,  

0S - measured MR signal intensity without a tracer,  
)(tS c - measured MR signal intensity after a bolus 

of the contrast agent injection,  
k – a proportionality constant. 
 

 
 
Figure 2: Signal to concentration conversion: (left – 
down) image before contrast arrival, image with 
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 maximum contrast presence, extracted signal intensity 
changes for a vessel, calculated contrast concentration 
in the same vessel. 
 

Contrast concentration as a function of time is 
measured for brain supported arteries. This function can 
be estimated as the arterial input function (AIF). 
Assuming ideal conditions this function should be an 
ideal impulse function, so measuring the output function 
(impulse response) one can specify properties of the 
object under study, including mass flow, mass volume, 
and mean transfer time. Since AIF is not an ideal 
impulse function (dispersion and delay) and because in 
DSC-MRI measurements are performed from a volume 
of interest (VOI), deconvolution should be used to 
calculate VOI impulse response F R(t) [6]: 
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where:  

)(tCa - contrast concentration in the artery (e.g., 
Middle Cerebral Artery) – Arterial Input Function 
AIF,  

)(tCt - contrast concentration in the tissue,  

Kh
ρ - scaling factor (quantitative description)  

−ρ  mean tissue density of a brain, ρ =1.04 
g/mol;  
Kh – hematocrit ratio (large to small arteries) 
Kh=(1-Hd)/(1-Hm); Hd=0.45; Hm=0.25;  
F*R(t) – scaled impulse response (residue function) 
inside VOI,  
R(t) - represents fractional tissue concentration: 
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where:  

h(t) – a transport function – an impulse response (an 
ideal instantaneous unit bolus injection).  
 

Distribution of transit times through the voxel depends 
on the vascular structure and the flow. The model is 
based on tracer kinetics for non-diffusable tracers – 
contrast material remains intravascular.  
Scaled impulse response can be calculated using 
deconvolution (with FFT or SVD to eliminate 
singularities). Since R(t=0) should be equal to 1, then 

CBFFtRF ===⋅ )0( (Cerebral Blood Flow). 
Cerebral blood volume (proportional to the normalized 
total amount of tracer) can be calculated as  
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Based on central volume theorem, Mean Transit Time – 
MTT - (average time required for any given particle of 
tracer to pass through the tissue after an ideal bolus 
injection) can be estimated as 
 

MTT=CBV/CBF. (5)

 
Bolus Arrival Time describes quantitatively the moment 
when the bolus reached the measured VOI. The BAT 
distributions through the brain offer added value to 
diagnostics and the knowledge of the accurate BAT is 
extremely important e.g. in recognition of AIF, in MTT 
estimation, etc. Signal delays of 1 to 2 seconds (usually 
equal to sampling period) can introduce an 
approximately 40% underestimation of CBF and 60% 
overestimation of MTT [7]. In parametric imaging the 
typical manual BAT extraction is not useful (e.g. 
256x256 signals). In [8] authors have proposed 
(declaring as the first approach– 2003) the automatic 
BAT recognition method based on piecewise continuous 
regression models.  
Automatic detection of BAT is important for automatic 
parametric imaging using DSC-MRI. Calculated  three 
types of quantitative parametric images (CBF, CBV, 
MTT), synthesized under strictly controlled procedure, 
offer additional and important information for brain 
studies. 
 
Material 
 

Based on the introduced description of quantitative 
limitations of DSC-MRI different simulations were 
performed using Mathematica (Wolfram Research)  and 
Java prepared applications. The concentration signal 
was modelled as 
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where:  

K, α, β model parameters (used β=3, α=2/3),  
0t - bolus arrival time (BAT). 

 
Recirculation component was included in C(t) as a 
scaled Gaussian function shifted in time and exponential 
component (1-exp(-t/T)). Resulted AIF was then 
convolved with residue impulse response function R(t), 
described by (3). MTT was set form the <1s,10s> range, 
resulting in different C(t) for simulated tissues. 
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 Material – clinical data 
 

We collected images for in-vivo measurements 
(1.5T MRI SE-EPI with: 12 slices, 50 samples, 
TR=1.25-1.61s; TE=32-53ms; slice thickness 5-10 mm; 
60 series - 3000 images). Images were collected for 
typical cases and for cases where Blood-Brain Barrier 
was damaged. Using own, created software we 
extracted signals and concentration curves for typical 
region of interests (ROI): arteries, grey matter (GM) and 
white matter (WM). Typical SNR values (defined as a 
ratio of a signal amplitude to a standard deviation of 
baseline noise) were 30 (arteries), 20 (GM) and 15 
(WM). However for some cases (BBB disruption, low 
contrast dose) the SNR was reduced up to 3-5.  
 
Method 
 

In [8] authors proposed (declaring as the first 
approach– 2003) the automatic BAT recognition 
method based on piecewise continuous regression 
models. They verified the method based only on 
synthetic, simulated data using (6) as a signal model. 
We verified the BAT detection method with clinical 
data described earlier. The resulted BAT (in ~60% off 
all normal cases) were shifted in time in comparison to 
true BATs (marked by experts). Almost 10% of the 
BATs were shifted by two sampling periods (TR). We 
conclude the reason as curvature of the gamma-variate 
function near the BAT does not describe accurately the 
real signal. This is especially a case in the global 
gamma-variate function fitting to DSC-MRI 
concentration signals (overall fitting quality is high, but 
not for BAT).  
The proposed method is based on the following 
assumptions:  
- SNR of the MR signal (not concentration signal as 

in [8]) > 3 , 
- a signal enhancement duration is at least 10 

seconds;  
- the baseline is measured at least 10s before BAT 

(noise estimation).  
The first step of the BAT detection is a gamma-variate 
(4 parameters including BAT) function fitting (6) to 
MR signal data (after baseline shift and negation). 
Since most experiments (similarly to performed 
experiments using piecewise continuous regression) 
produced underestimation of BAT (lower than the true 
BAT as in [8]) thus we apply the next step. Then we 
apply threshold operator  
 

})1(:min{1 TtStBAT fitted >+= , (7) 
 
where:  

T – the threshold value based on the SNR of the 
baseline signal )(tSc ;  
T=mean( )(tSc )+stddev( )(tSc ).  

We propose to use original signal instead of the derived 
concentration function (1) to eliminate any non-linear 

modifications. The thresholding is performed on fitted 
signal so a noise is assumed to be filtered (assumed 
original signal recovered using the process model).  
The method requires the fitting operation which is 
costly. In parametric imaging we are processing all 
signals from the region of interest, usually the image. 
This leads to the total number of signals equals to the 
total number of pixels.  
Calculation reduction requires to eliminate fitting 
operation. Keeping in mind assumptions (i.e. high SNR) 
the modified threshold operator can be proposed as: 
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where:  

TR – sampling interval,  
n – number of samples in the enhancement region, 
usually n TR=10-25s. 

 
The second method can be theoretically justify because 
signals with very low SNR (according to the previously 
defined SNR for this study) are no reliable and medical 
diagnosis based on such signals is a risk. 
 
Results 
 

Both BAT detection method variants were applied to 
measured data and synthetic data constructed using 
gamma-variate signal model (4 parameters, including 
BAT). In case of clinical data we tested randomly 
chosen signals from three compartments: vessel, grey 
matter and white matter. Signals were extracted and 
presented as one dimensional charts using linear 
interpolation between samples.  
Almost all detected BAT values were in agreement with 
the expert evaluation. Only in one case (for typical 
DSC-MRI data, SNR>5) there was a difference in 
detected BAT values (i.e., BAT2<BAT1). However the 
difference was only 1 TR.  
In case of data sets for lower SNR (<5) 30 percent of 
BAT values were overestimated (i.e. greater than true 
BAT). In this case the fitting procedure improves results 
only in 10% cases. The reason was that the fitting 
procedure for other signals was not successfully 
competed. Similar results were obtained for simulated 
data. In case of high SNR the all BAT values were 
detected properly. This could be expected since the 
simulation model and fitting model are the same. 
In figure 3 different signals are presented with detected 
BAT values presented as values related to the beginning 
of the measurement.   
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Figure 3: BAT detection for different kind of signals 
(including low SNR) indicated within the object: (left-
down) BAT=21.45; 24.31; 22.88; 24.31; 27.17; 17.16; 
25.74; 24.31. 
 
 
Discussion and conclusion 
 

Proposed methods produced very good BAT 
detection results. Even for rare, very low SNR almost 
70 percent of BAT values were estimated accurately. 
This is very interesting result since usually SE-EPI 
method (used in this study) in DSC-MRI is 
characterized by lower SNR than GE-EPI.  
Other methods were investigated based on signal 
filtration (fig. 4). However the best results were 
achieved using gamma-variate model fitting and 
thresholding. Especially after data reduction (i.e. 
reduction of data samples after the signal maximum or a 
few samples after) the better fitting quality was 
observed in the BAT region. Further studies will be 
performed on clinical data measured from other MRI-
DSC devices. We are looking forward to measure image 
sequences with sampling time lower that 1s. 
 

 
 
Figure 4: The role of data pre-processing in BAT 
detection: 1- measured signal (linear interpolation 
between samples), 2 – signal filtered using wavelets 
(soft thresholding), 3 - signal filtered in frequency 
domain (low pass). 
 

Performance tests showed than the modified BAT2 
method runs extremely fast. The tests performed on 
Pentium IV 2,66GHz, 1G RAM, Windows XP indicated 
that the average time required to process all image 
signals (a sequence) was lower than 1 ms.  
The method has been implemented in the DSC-MRI 
brain analysis software. After prototyping algorithms 
were implemented in DSC-MRI software package 
created in Java  (Sun JDK 1.5). The software operates 
on original DICOM image data, extracts user-defined 
time series, allows to enhance and analyse images and 
generates parametric maps (BAT, rMTT, rCBV, rCBF) 
with legends (colour lookup table description). In Fig. 5 
the screen capture is presented as an example of the 
graphical user interface and image presentation.  
 

 
 

Figure 5:  An example of the graphical user interface 
and image presentation (left top to right down): original 
image time series presented slice by slice, BAT image, 
rCBV image, image mask generated in the pre-
processing stage in AIF detection 
 
Currently the software is prepared for clinical research. 
There are many unsolved problems for standardization 
of parametric imaging and visualization of DSC-MRI 
data which is extremely important for clinical use. Some 
of them are: value ranges and units for semi-quantitative 
description, colour lookup tables, etc. 
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