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Abstract: Blind source separation (BSS) techniques
are increasingly being used in biomedical signal
processing applications involving the analysis of
multichannel electroencephalogram (EEG) signals.
These methods extract a set of underlying sources
from the EEG, reflecting neurophysiological brain
activity, artifacts and noise, and in some cases
clinically relevant components relating to epileptic
seizures. Tracking and detecting sources of interest
fundamentally requires somea priori knowledge or
assumptions regarding their spatial and/or temporal
characteristics. This work presents and explores a
spatial topographical approach to source tracking
and detection in multichannel EEG based on prior
knowledge of the sensor projections (scalp potential
distributions) associated with the target sources,
which can be estimated from a representative data
segment using conventional BSS methods, e.g., using
signal time-structure. Thus, for a given segment of
EEG, the absence or presence of each target source
can be determined on the basis of a comparison of its
sensor projection with those of the underlying sources
extracted from the segment using BSS. Applied to
ictal EEG, this spatial topographical approach may
play a useful role in tracking and detection seizure
related epileptiform activity.

Introduction

The development of reliable methods for monitoring
epileptiform multichannel electroencephalogram (EEG)
signals and automated tracking and detection of seizure
related activity poses a considerable biomedical signal
processing challenge in clinical neurophysiology. Data-
driven techniques for blind source separation (BSS) and
independent component analysis (ICA), e.g. [1, 2] are
increasingly used for signal processing and analysis of
multichannel biomedical data [3]. Such methods exploit
spatial, and temporal, spectral or statistical dependencies
in the observed data in order to extract a set of so-called
sources which reflect the underlying signal generating
and mixing processes, including physiological sources of
interest, as well as artifacts and noise. Applied to EEG,
these methods can separate ocular artifacts from brain

activity [4] and extract neurophysiologically meaningful
sources reflecting epileptiform brain activity [5, 6].

Conventional methods for monitoring clinical (epilep-
tiform) multichannel EEG generally involve morpholog-
ical, spectral or time-frequency analysis on individual
channels to determine features for detecting and classi-
fying events such as seizures and spikes [7, 8], and do not
take full account or advantage of the inherently spatio-
temporal nature of the EEG signal. In some cases, lo-
calization of focal epileptiform activity within the brain
volume is possible by means of a biophysical volume
conductor model and assuming simple dipolar current
sources, see e.g., [9], yet such (exclusively) spatial ap-
proaches can have difficulties in distinguishing sources
with strong spatial and temporal correlations.

BSS methods not only estimate the waveforms of the
underlying sources but also provide spatial topograph-
ical information in terms of the source sensor projec-
tions, which uniquely identify each source. In the case
of EEG data, these sensor projections are analogous to
the scalp potential distributions (topographies) associated
with each source waveform. Approximate prior knowl-
edge of target source sensor projections may be useful
for tracking and detection, if the spatial source attributes
and mixing process remain relatively stable.

This work presents an approach to source tracking
and detection in multichannel data, which exploits prior
knowledge of the target source sensor projections, and
uses these for comparison with the sensor projections of
sources extracted from the EEG by means of BSS based
on time-structure. Specifically, the method is illustrated
in conjunction with a potential application for seizure de-
tection epileptiform EEG.

Materials and Methods

Blind Source Separation:Conventional BSS methods
assume a generative data model whereM time-varying
signalsx(t) = [x1(t), . . . ,xM(t)]T are a linear mixture ofN
sourcess(t) = [s1(t), . . . ,sN(t)]T subject to sensor noise
n(t) = [n1(t), . . . ,nM(t)]T so that

x(t) = As(t)+n(t) , (1)
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 where A is a M ×N matrix whose columns represent
the source sensor projections. The source number, time-
series and sensor projections are all unknown, and the
aim is to determineN, s(t) andA from x(t) using a set
of minimal and generic assumptions only.

Such assumptions usually require thatN ≤ M, that
s(t) are zero-mean signals with unique time-structure,
and that A is non-singular matrix with unit norm
columns. The noise termn(t) is often modelled by a
zero-mean, spatially and temporally white, multivariate
(gaussian) random process, or conveniently neglected.

Provided thatN ≤M, a model order estimatêN ≈ N
can be obtained from an eigenvalue decomposition of
the data cross-covariance matrix, in terms of the num-
ber of dominant eigenvalues, e.g. using variance thresh-
olds. In this study,N̂ reflects the number of eigenvalues
whose proportional contribution to overall variance is at
least 1%. Determination of source waveform estimates
ŝ(t) ≈ s(t) essentially requires an estimate of the mixing
matrix Â ≈ A and involves inversion of the model (1)

ŝ(t) = Â†x(t) = Â† [As(t)+n(t)] , (2)

where theN̂×M matrix Â† = (ÂT Â)−1ÂT is the pseudo-
inverse of the mixing matrix estimatêA.

Finding the mixing matrix estimatêA in the context
of time-structure based BSS methods involves a numeri-
cal optimization problem with the goal of minimizing the
temporal (spectral) dependencies among the source
waveforms, for example through joint approximate di-
agonalization of lagged cross-covariance matrices, e.g.,
[6, 10, 11]. In this study, for speed and stability,
we used an orthogonally constrained version of joint-
diagonalization algorithm in [12], applied to the temporal
cross-covariances of the spatially whitened data.

Source Tracking using Spatial Information:The pro-
posed spatial approach to source tracking requires that the
sensor projections (scalp potential distributions) of the
target sources are approximately knowna priori. In the
context of BSS based analysis approaches, it is straight-
forward to obtain such target topographies by means of
manual selection from a set of sources extracted from a
representative segment of EEG containing clear exam-
ples of the source activity of interest, e.g., epileptiform
activity related to seizures. In the case of focal epilep-
tic seizures, it may also be possible to approximate the
relevant scalp voltage distributions using a dipole source
model.

Subsequent tracking of the target source activity in-
volves repeated application of BSS to shorter segments of
novel data in a moving window fashion. Since BSS meth-
ods using signal time-structure involve computation of
second order temporal statistics only, it is possible to used
relatively short windows, depending on the sampling rate.
Ultimately, the choice of window duration and the de-
gree of overlap between windows will reflect a balance
between temporal resolution, the time-frequency charac-
teristics and non-stationarity of the target source activity,

robustness of the temporal statistics and computational
load. In the present context, the signals were sampled
at 200 Hz and the target source activity is characterized
by a dominant rhythmic component in the 4-6 Hz range;
hence, moving windows of 4 seconds duration with a 2
second partial overlap were used.

Given an estimate of the mixing matrix for a particular
window of EEG data, i.e. estimates of the scalp topogra-
phies of the underlying, active sources, one straightfor-
ward means of quantifying the degree of correspondence
between these sources and the target source with refer-
ence to their spatial topographical properties is to com-
pute the (absolute) correlations between the target and
sample source sensor projections, i.e. the dot products,
since these are all unit norm vectors. If the target source is
active, then there ought to be a high correlation between
its sensor projection and one of the columns of the mix-
ing matrix. Thus, the activity of an (in principle) arbitrary
number of target sources may be monitored by consider-
ing the maximum spatial correlation between each target
topography and the mixing matrix columns in each win-
dow.

Detection of Target Source Activity:One way of de-
termining the presence or absence of a given target source
in a particular epoch would be to apply a set of threshold
criteria to the maximum spatial correlation of its sensor
projection with the mixing matrix columns, which might
possibly take into account the values in neighbouring
windows, especially when considering sustained source
activity such as epileptic seizures. In the case of noisy
data such as EEG, the detection criteria should accommo-
date the fact that, due to sampling and estimation errors,
the maximum spatial correlations may never be quite per-
fect (i.e. 1.0) and are likely to be subject to small varia-
tions from one window to the next. Hence, one possible
detection rule might be triggered if the maximal spatial
correlation exceeds a fairly high threshold (e.g. 0.9) in
the current window and remains above a slightly lower
threshold value (e.g. 0.85) in the subsequent window(s).
Similarly, if source activity was “detected” in the preced-
ing window(s), successful detection in the current win-
dow may only require the correlation to exceed the lower
threshold value.

Acquisition and Processing of Ictal EEG:The utility
of the proposed spatial source tracking method for track-
ing epileptic seizure activity was tested on two segments
of 25-channel ictal EEG, recorded from one patient in a
long-term epilepsy monitoring unit on two separate oc-
casions. The Ag/AgCl electrodes were arranged on the
scalp in accordance with the international 10-20 system,
and EEG signals were recorded with a sampling rate of
200 Hz referenced to channel Fpz. For subsequent analy-
sis, the data segments were off-line re-referenced to an
average reference, and the mean was removed from each
channel.
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 The first data segment, shown in Figure 1(a), served as
a reference and consisted of 200 seconds of EEG, heavily
contaminated by ocular, muscle and movement artifacts,
and showing prominent focal seizure related activity be-
tween about 160 and 190 seconds, most clearly visible on
channel P9. The source waveforms and sensor projections
(scalp potential distributions) extracted by means of joint-
diagonalization of both instantaneous and lagged cross-
covariance matrices (τ = 0,1, . . . ,200) computed over 10
second non-overlapping windows for the entire segment
(i.e. exploiting non-stationarity and spectral signal char-
acteristics) are shown in Figure 1(b); these sources reflect
ocular artifacts such as blinks (S1) and horizontal eye
movements (S2), as well as a “seizure related” compo-
nent (S4) characterized by strong 5 Hz rhythmic activity
from about 160 seconds, which can also be seen in the
spectrogram of Figure 1(c).

The second data segment, seen in Figure 2(a), was
recorded from the same patient 7 days after the first seg-
ment. The EEG is again heavily contaminated with ocu-
lar, muscle and movement artifacts, but seizure activity is
visible (P9) from about 100 to 140 seconds. The source
waveforms and sensor projections (scalp potential distri-
butions) extracted from this segment (using the same BSS
method as for segment 1) are shown in Figure 2(b), and
again reflect both ocular artifact sources (S1, S2) and a
source showing “seizure related” activity (S3) compris-
ing two burst of 4-6 Hz rhythmic activity at about 100 and
130 seconds, seen also the spectrogram of Figure 2(c).

Visual inspection alone clearly indicates that the sen-
sor projections of the seizure related sources, S4 and S3,
from the first and second EEG segments, respectively,
are very similar, as are those of the ocular artifacts, S1
and S2. This seems to support the validity of the assump-
tion that the spatial source attributes (i.e. location of the
epileptogenic focus) and the mixing process (i.e. the elec-
trode positions and impedances) are relatively stable, as
this is prerequisite for the application of any spatial ap-
proach to source tracking and detection.

Application for Seizure Onset Analysis:The source
tracking and detection approach was first applied to EEG
segment 1 in order to validate that the presence of a
known source can be successfully detected by moni-
toring and thresholding the maximum absolute corre-
lations between the “true” source topography (S4) and
the columns of the mixing matrices estimated, using
joint-diagonalization of lagged cross-covariances (τ =
0,1, . . . ,200), over short 4 second moving windows. The
detection thresholds were chosen to maximize the num-
ber of hits during the 30 second period of strong 5 Hz
activity, whilst also minimizing the number of false posi-
tives at other times. For cross-validation, the method was
subsequently applied to EEG segment 2, using the same
target topography, window parameters, source separation
criteria and detection thresholds that were used in EEG
segment 1.

Results

The spatial correlation measure and detection results
for target source S4 in EEG segment 1 are shown in Fig-
ure 1(d), and illustrate that the maximum spatial correla-
tion reaches and maintains the highest levels during the
period from 160 to 190 seconds when the activity of the
“seizure related” source S4 has a strong rhythmic compo-
nent at 5 Hz, seen in Figure 1(c). The threshold values and
detection criteria which take into account correlation val-
ues of neighbouring windows ensure that occurrence of
epochs marked as “ictal events” is limited to the rhythmic
part of the waveform, despite one brief supra-threshold
deflection earlier on in the recording.

For the cross-validation case, the spatial correlation
and detection results for tracking the target source S4
(from EEG segment 1) in EEG segment 2 are illus-
trated in Figure 2(d). Although overall values are slightly
lower than for segment 1, the maximum spatial correla-
tion again reaches and maintains the highest levels dur-
ing rhythmic part of the (true) “seizure related” source
S3 between 100 and 140 seconds, seen also Figure 1(c).
Although all of the epochs marked as “ictal events” occur
during this time, a short segment of activity towards the
end of the seizure is missed. One plausible explanation
for this lapse is that the complex temporal dynamics in
that part of the waveform are projected onto two compo-
nents during the spatial whitening, which the subsequent
orthogonally constrained source is unable to recombine
into one component. Nevertheless, the performance of the
method is encouraging, and without false positives.

Discussion

The aim of this work was to introduce and illus-
trate a concept for a spatial approach to source track-
ing and detection in multichannel EEG, based on the
maximum absolute correlation of a target source sen-
sor projection with the sensor projections of the under-
lying sources found to be present in a short segment of
data. One potential potential application of such a spa-
tial approach to source tracking may be in clinical neu-
rophysiology for the detection of epileptiform activity re-
lated to seizures and, in principle, inter-ictal spikes, when
the spatial attributes of the epileptogenic focus (loca-
tion) have been previously diagnosed, are stable and can
be parameterized in terms of a source sensor projection,
where the latter can be determined by means of conven-
tional BSS methods applied to a representative segment
of EEG data containing seizure activity. In the case of
target sources which characteristically exhibit periods of
sustained rhythmic activity, it seems appropriate and intu-
itive to use BSS methods based on signal time-structure.

A potential application of this spatial topographical
source detection method was illustrated on two segments
of 25-channel ictal EEG. In the first segment, the method
could successfully detect a known seizure source (valida-
tion), and in the second segment, the method was able to
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  (a)    Ictal EEG Segment 1
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  (c)    The "seizure−related" source (S4):
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  (d)    Validation of seizure detection using target topography S4
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Figure 1: (a) 200 second segment of 25-channel ictal EEG with left temporal seizure onset after about 160 seconds.
(b) Waveforms and sensor projections (scalp topographies) of the 7 strongest sources (from a total of 12), extracted by
means of joint-diagonalization of both instantaneous and lagged cross-covariance matrices (τ = 0,1, . . . ,200) computed
over 10 second non-overlapping windows for the entire segment, thereby exploiting non-stationarity and spectral signal
characteristics. These reflect ocular (S1, S2) artifacts as well as rhythmic seizure activity (S4). (c) A closer examination of
the spatial and time-frequency properties of the “seizure related” source S4. (d) Validation of the seizure detection method
using source S4 as the target, applied to 4 second windows with 2 seconds overlap. Detection involves thresholding the
maximum correlation of the target topography with the columns of the mixing matrix estimated for each window.
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  (a)    Ictal EEG Segment 2

  (b)    Source sensor projections and waveforms

  (c)    The "seizure−related" source (S3):
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  (d)    Cross−validation of seizure detection using target topography S4 from EEG segment 1
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Figure 2: (a) 200 second segment of 25-channel ictal EEG (recorded 7 days after the previous segment) with seizure
onset after about 100 seconds. (b) Waveforms and sensor projections (scalp topographies) of all 7 sources, extracted by
means of joint-diagonalization of both instantaneous and lagged cross-covariance matrices (τ = 0,1, . . . ,200) computed
over 10 second non-overlapping windows for the entire segment, thereby exploiting non-stationarity and spectral signal
characteristics. These reflect ocular (S1, S2) artifacts as well as rhythmic seizure activity (S3). (c) A closer examination of
the spatial and time-frequency properties of the “seizure related” source S3. (d) Cross-validation of the seizure detection
method using source S4 from the previous EEG segment as the target, and with application of the same tracking window
parameters, detection measures and threshold criteria that were established before.
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 capture most of the activity associated with an unknown,
but spatially similar, seizure related source. Since sources
extracted by means of BSS methods are uniquely deter-
mined by their sensor projections, one advantage of this
tracking approach is that the temporal characteristics of
the target source waveforms need not be known explic-
itly, as is the case in other waveform-based seizure onset
analysis approaches.

A potential disadvantage for this method is that in
conjunction with BSS methods involving spatial whiten-
ing it is sometimes possible that complex source wave-
form dynamics may be projected onto several sources,
which leads to a reduction in the spatial correlation of the
relevant mixing matrix columns with the target topogra-
phy and thereby fail to detect even relatively strong ac-
tivity. One possible solution to the problem of such “split
sources” would be to consider the spatial correlation of
the target source with the entire source signal subspace,
as proposed in [13], as a measure for detection. This al-
ternative has a further advantage that determination of
the source signal subspace, i.e. an orthonormal basis set
spanning the same subspace as the columns of the mixing
matrix, can be achieved using simpler and computation-
ally more economical methods such as principal compo-
nent analysis (PCA) and do not require the use of more
advanced BSS methods during the tracking phase.

Whilst the detection results reported for the two seg-
ments of ictal EEG in this preliminary study serve to
illustrate the concept of the method and show some
promise, a more rigorous and extensive evaluation on
data from several patients presenting with a wide range of
seizures is required. Determining the reliability and accu-
racy of this and other spatial source tracking and detec-
tion methods forms a part of ongoing and future research
efforts in our group.
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