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Abstract: The paper presents five models of first-
pass data in MRI measurements. The models are 
both parametric and non-parametric. The aim is to 
choose the most appropriate description of the 
data. The model of choice is the one which satisfies 
the adopted criteria of model quality (parameter 
accuracy, AIC index and physiological plausibility). 
The weighted residual sum of squares (WRSS) was 
used for parameter estimation of the models. It 
emerges from the calculations that the models 
considered show a similar ability to mimic the data. 
The parameter estimate accuracy and model 
quality used for description of the phenomena 
depend on the complexity of the model, in other 
words on parameter number. Better results are 
obtainable for less complex models. Parametric 
modelling gives insight into the functioning of the 
system, while the non-parametric does not. 
 
Introduction 
 

Magnetic resonance imaging (MRI) techniques are 
used for measuring cerebral blood flow (CBF). The 
most successful approach is based on dynamic 
tracking of a bolus of a paramagnetic contrast agent, 
referred to as “dynamic susceptibility contrast”. The 
goal is to design a non-invasive method of mapping 
CBF with high temporal and spatial resolution over the 
range of blood flow that is of interest. The technique 
using dynamic susceptibility contrast magnetic 
resonance imaging (DSC-MRI) is non-invasive for a 
lower dosage of a contrast agent. At a higher dosage of 
the contrast the DSC-MRI technique is toxic. 
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Figure 1: Symbolic representation of MRI 
measurements with a paramagnetic contrast agent. 
 

A bolus of paramagnetic, as it passes through a 
region of interest (ROI) in the brain (Figure 1), 
undergo the dispersion. In modelling MRI 

measurements of dispersion both non-parametric and 
parametric models are employed. 

Typical data observed during the passage of a bolus 
of a contrast agent in MRI techniques are shown in 
Figure 2. The transit time of a bolus through the tissue is 
only a few seconds. High temporal resolution imaging is 
therefore required to obtain the sequence of images 
during the flow in and out of the contrast material. Echo 
planar imaging (EPI), the fast imaging technique, 
enables the most interesting first-pass of a bolus to be 
measured. 

 

 
 

Figure 2: Three regions are shown [7], which can be 
distinguished in the time course. These represent the 
baseline (before the arrival of the bolus), the first-pass 
of the bolus and the recirculation (a second, smaller 
peak). 

 
Models used for perfusion quantification are based 

on tracer kinetics and rely on the assumption that the 
blood-brain barrier (BBB) is intact and, therefore, that 
the contrast material remains intravascular. 

The construction of block diagrams helps in 
modelling to clarify what key variables best represent 
the system under study. It also allows observation and 
intuition to be formalised. The block diagram represents 
a conceptual model of the process under study but it has 
limited ability to bring us closer to an understanding of 
the process described as it gives only a qualitative 
description of the phenomenon. An example of a model 
in the form of a block diagram is the symbolic 
representation of MRI measurements, shown in Figure 
1. 

The non-parametric model assumes no internal 
structure and has been referred to in the literature [1] as 
the black-box or empirical model. In this approach the 
output of a system is fitted to a chosen regression 
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function ( )t,pf i  depending of the number of free 
parameters ip  it incorporates. Sometime we are able 
to form a hypothesis concerning the probable principle 
of system operation in the form of an algebraic 
differential or integral equation that relates the input to 
the output of the system under study. This type of 
model is said to possess internal structure and is 
termed [1] a structural, parametric or grey-box model. 
Parametric modelling brings us to better understanding 
of the system behaviour and is a more desirable 
approach then the non-parametric one. The paper 
presents parametric and non-parametric models 
describing a bolus passing through the brain ROI in 
dynamic MRI measurements. These are compared in 
terms of parameter accuracy and the Akaike criterion 
with respect to their ability to deliver a robust and 
sensitive candidate for parametric imaging (or 
mapping) of important physiological factors and 
macroscopic parameters such as CBF, CBV, MTT. 
 
The state of the art. Black-box models. Regression 
function modelling 
 
Linear interpolation 
 

The most straightforward approach is to use linear 
interpolation between the points measured [2]. This 
kind of approximation follows point by point and does 
not round any of them. The disadvantage of the 
description is the large number of model parameters. 
The number is twice as great as the number of used 
linear sections; each of the linear sections fits two 
neighbouring measurements with two parameters.  

 
Spline functions 
 

A measured curve can be smoothed by piecewise 
short lengths, usually of cubic polynomials, that give 
the best fit to localised sections of data. The equations 
are joined together smoothly so they gave a single 
empirical regression function. Splines (not necessarily 
cubic but also quadratic or linear) are flexible and 
convenient for the empirical description of data but the 
price paid is the large number of parameters. For 
instance, in the case when four separate cubic sections 
are used, each with four parameters, the model fits the 
data with sixteen parameters. 

 
The impulse response and linear convolution 
 

The impulse response, ( )th , provides a complete 
characterisation of the dynamic behaviour of a linear 
system. Once ( )th  is known, the time response ( )ty  to 
any arbitrary input ( )tu  can be calculated by 

convolving ( )th  and ( )tu : ( ) ( ) ( ) τττ dtuhty −= ∫
∞

0
. 

 
 

Gamma Variate 
 

The expression of Gamma Variate is [2]: 

( ) ( ) ( )11 +Γ= +−
αβ αβα

t
ettf , where 1−>α  and β  are 

parameters and ( )1+Γ α  is the gamma function defined 

as follows: ( ) dxex x−∞

∫=+Γ
0

1 αα .  

The Gamma Variate is usually expressed as [6]: 
 

( ) ( ) ( )( )βα
00 ttexpttAtf −−−= , for 0tt >   (1) 

 
Time 0t  is the delay from 0=t  to the point which 
begins the part of the Gamma Variate function used for 
perfusion modelling. For modelling first-pass data the 
part of the Gamma Variate function for 0tt > is used. 

βα ,,A are free parameters. An exemplary Gamma 
Variate function is presented in Figure 3. 
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Figure 3: An exemplary Gamma Variate function 
( 0 5t = ). The part of the curve for 0t t>  is used for 
perfusion modelling. 

 
The Gamma Variate function in the form (1) shows 

a number of difficulties in the identification procedures. 
This is because the parameters α  and β  are coupled. It 
can be shown that [6]: 

 
maxt=αβ , where ( ) maxtfargtmax ==   (2) 

 
A convenient approach is to adopt the Gamma 

Variate regression function in the form [7]: 
 

( )
0

0
0 0 0; , , exp ;

t tt t
f t t x A t t

β
ττ β

τ

−⎛ ⎞−⎜ ⎟
⎝ ⎠−⎛ ⎞= + ⋅ ⋅ >⎜ ⎟

⎝ ⎠
,(3) 

 
where 0x  – baseline, A  – amplitude, 0t  – delay, τ  – 
spread, β  - superscript parameter. The baseline is not 
estimated but is measured. Thus there are four 
parameters of the Gamma Variate function to be 
estimated: A , 0t , τ  and β  [8], [9]. The above form of 
the Gamma Variate function is used for modelling 
purposes as the spread of parameters, the amplitude and 
the time delay relate to the shape of the modelled data. 



The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005 
EMBEC'05  Prague, Czech Republic 

IFMBE Proc. 2005 11(1)  ISSN: 1727-1983 © 2005 IFMBE  

 
The Golish bolus function 
 

The Golish bolus function [4] incorporates an 
asymptotic recirculation term 

 
( )

( ) ( ) ( )

( )( )( )

0
max 0

0 0

exp 1
    exp

       + 1 exp /

Golf t

t t
f t t

f t

α

αβ β

τ τ

=

− −⎛ ⎞ ⎛ ⎞
− +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

− − −

 (4) 

 
This function was designed for modelling the 

whole range of output data observed during the 
passage of a bolus of a contrast agent in MRI 
measurements, the first-pass and the recirculation 
(Figure 2). 

In black-box modelling, the regression function 
parameters (such as 0t,,βα  and A  in equations (3) 
and (4)) are termed the “macroparameters”.  
 
Grey-box model 
 

A compartmental model of contrast agent 
distribution is shown in Figure 4. 
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Figure 4: Compartmental model of contrast agent 
distribution; 10 k,k  and 2k  are unknown 
microparameters of the parametric, grey-box model. 

 
The model equations and their solution are: 
 

( )1
2 0 ,   0 0;k tx k e x k x

y x
α − ⋅= ⋅ ⋅ − ⋅ =

=
,  (5) 

( )01 2 42
1 3

0 1

k tk t p t p tk
y e e p e p e

k k
α − ⋅− ⋅ − ⋅ − ⋅⋅

= − = ⋅ + ⋅
−

(6) 

 
From MRI measurements to macroscopic 
parameters 

 
The ROI excitation, arterial input function AIF, is 

scanned in the middle cerebral artery. The fitting 
procedure gives sets of parameter estimates for chosen 
regression functions used for description of the input 
(AIF) and the output (ROI): inputf  and outputf .  

The functions are then used for calculating CBV, 
CBF and MTT. CBV is a measure of the relative blood 
volume of a ROI 

 

( )

( )
0

0

output

input

f t dt
CBV

f t dt

∞

∞=
∫

∫
   (7) 

 
Assuming the linearity of the process, the 

relationship between the input inputf  and the output 

outputf  can be described by means of the convolution 
integral 

 

( ) ( ) ( )
0

regr ROI reg AIFf t f t R t dτ τ
∞

∗= ⋅ −∫  (8) 

 
where ( ) ( )R t CBF R t∗ = ⋅  and ( )R t is the impulse 
response observed in the ROI.  

With the identification of  outputf  and inputf , the ( )R t∗  
can be calculated via deconvolution. The CBF  factor is 
the relative blood inflow to the ROI and 

( ) ( )0 0R t CBF R CBF∗ = = ⋅ = . 
Mean transit time MTT  is defined as follows 
 

( )
( )

( )

( )

1

0

0

0

1
0

st

th

t h t dt
moment of h t

MTT
moment of h t

t h t dt

∞

∞= =
∫

∫
 (9) 

 
where ( )h t  is the impulse response at the ROI output 

and ( ) ( )1R t H t= −  ( ) ( )dh t H t
dt

= ⎡ ⎤⎣ ⎦ . 

It is possible to calculate MTT on the base of ( )R t∗ , 
previously obtained via deconvolution. It should be 
noted that the numerical deconvolution procedure used 
for assessing ( )R t∗  and MTT could greatly amplify 
errors [8]. The errors made in each sequential estimate 
of ( )R t∗  tend to accumulate. The result of 
deconvolution depends on the number and quality of the 
measurements. 

Modelling the MRI data is a preparatory step 
necessary for achieving macroscopic parameters (such 
as CBF, CBV, MTT) and for mapping them for 
diagnostic purposes.  

 
Parameter estimation 
 

The five model functions shown in Table 1 were used 
for modelling the regression function in ROI, namely 

outputf .  
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The parameter estimation means assigning 

numerical values to unknown model parameters. 
The maximum-likelihood (ML) approach was used 

for parameter estimation. This is in the form of least 
squares (LS) for a measurement error assumed to be 
Gaussian.  

Let us consider regression functions ( )t,f p  and 
output measurements ( )ity  at time points 

N,..,,i,ti 21= . The vector [ ] [ ],...,p,..,p,p
pn βα== 21p  

represents conveniently ordered unknown pn  model 
parameters (micro or macroparameters). The LS 
estimate p� of p  is: 

 
( )pp ,yOFminarg�

p
=   (10) 

 
Vector p� is estimated in the time domain by 

minimising the weighted residual sum of squares 
(WRSS) with the objective function OF 

 

( ) ( ) ( ) ( ) 2

1

1, , ,
N

i i
i

OF WRSS y t f t
R=

= = −⎡ ⎤⎣ ⎦∑y p y p p (11) 

 
where ( ) ( )[ ]TNty,..,ty 1=y  is the column vector of 
measurements. The measurement noise variance R  is 
assumed to be known as a scale factor estimated from 
the final WRSS [8]. 

The precision of the parameter estimates was 
evaluated from the inverse of the Fisher information 
matrix M  by 
 
 ( ) 1�cov R −= ⋅p M    (12) 
where 

 
( )�

degrees of freedom
WRSS

R =
p

  (13) 

and the degree of freedom equals the difference 
between the number of measurements N  and the 
number of model parameters pn  and �p  is the value of 
the parameter vector, which satisfies 

( ) �
minOF =

p=p
y,p . 

 
Selection of model 
 

When alternative models have been considered, it 
is necessary to select one model among a number of 
competing ones. The first criterion is the ability of the 
model to fit the data. Where the fit is satisfactory and 
comparable (small WRSS and unbiased residuals) for 
a number of competing models, additional criteria 
have to be considered. In the literature, a number of 
methods are presented [10] for the selection of the best 
model. Some of these have referred to information 
criteria [11], [12]. When parameter estimation is 
performed in LS, the common strategy is to select a 
model based on the Akaike criterion. According to the 

criterion, the model of choice is the one that gives the 
minimum of the index 

 
( )p�WRSSnAIC p +⋅= 2   (14) 

 
where pn  is the number of model parameters and 

( )p�WRSS  is the value of the objective function at its 
minimum. The AIC index penalised the higher number 
of model parameters and rewarded the smaller 

( )p�WRSS , linked to the goodness of fit.  
 
Results 
 

The parametric and non-parametric models of first-
pass MRI data, shown in Table 1, were examined in 
detail. 
 

 
 

Figure 5: Specially designed software (MATLAB) was 
used for identification. The figure shows the 
intermediate results obtained for a set of measurements 
and the Gamma Variate chosen as the tested regression 
function. All the measurements (the baseline, the first-
pass data and the recirculation data) are shown as 
circles. The measurements chosen for the first-pass fit 
are marked dark. The solid line shows the model 
function fitted to the measurements chosen as the first-
pass data. 

 
Table 1: The first-pass MRI data models under 
consideration. 
Mode
l 

Regression functions outputf  pn
 

1 [ ] [ ]tpexpptpexppfcomp 4321 −+−=  4 
2 ( ) ( )[ vv

p
vvvargam ptpexpptpf v

2421
3 −−⋅−⋅=

 

4 

3 [ ]tpexptpf v
p

vvargam
v ⋅−⋅⋅= 04010

03  3 

4 ( )131
2 −= −

b
pt

bbvargam tptepf b  3 

5 apt
aavargam tepf 2

1
−=  2 
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Figure 6: An exemplary result of modelling. Functions 
numbered 1 and 2 were chosen as regression functions 
(as parametric and non-parametric model functions 
respectively) from Table 1. The solid and the dashed 
lines indicate the model functions fitted to the 
measurements chosen as the first-pass data. Samples 
were taken at rt r t= ⋅∆ , 1 30r = ÷ , 1.43 sect∆ = . 

 
Figure 6 shows all the measurements (ROI in grey 

matter) and the measurements chosen for the first-pass 
fit (sample numbers 18 to 27). 
 
Table 2: Model parameter estimates ip�  for 5 
considered models. 
Model 1p�  2p�  3p�  4p�  

1 10.4050 0.8060 -10.6314 1.3834 
2 0.9226 -1.7497 21.7448 7.6708 
3 19.6701 - 2.1421 2.1802 
4 0.0614 0.1433 91.7607 - 
5 5.5685 1.1603 - - 

 
Table 3: Standard deviations std dev and 

[ ] %*
p�
devstd%CV
i

i
i 100 

=  of the model parameter 

estimates ip� . 
Model 

[ ]%CV
devstd

1

1 
 [ ]%CV

devstd

2

2 
 [ ]%CV

devstd

3

3 
 [ ]%CV

devstd

4

4 
 

1 13.3680 
128.4 [%] 

0.3305 
41.0 [%] 

13.3550 
125.6[%] 

0.4551 
32.8 [%] 

2 2.9791 
332.9[%] 

0.3812 
21.7[%] 

6.2093 
28.5[%] 

1.1474 
14.9[%] 

3 1.1470 
5.8[%] 

- 0.0521 
2.4[%] 

0.0540 
2.4[%] 

4 0.1082 
176.2[%] 

0.0319 
22.3[%] 

159 
174.0[%] 

- 

5 0.290 
5.2[%] 

0.114 
9.8[%] 

- - 

 
The first function from Table 1 is the regression 

function of the compartmental model shown in Figure 

4. Functions 2 to 5 are based on the general form of the 
Gamma Variate function (3), and are the propositions of 
simplifications of the general form with the purpose of 
reducing the number of parameters.  

Model parameter estimates were obtained for 
measurements taken on grey matter ROI.  
 
Table 4: WRSS , pn  and the AIC  index for the 
considered models. 

Model WRSS  pn  AIC  

1 0.1075 4 8.1075 
2 0.0814 4 8.0814 
3 0.0842 3 6.0842 
4 0.0851 3 6.0851 
5 0.0769 2 4.0769 

 
Conclusions 
 

For all the considered model functions the quality of 
fit, measured as the WRSS, was similar. All the models 
show a similar ability to mimic the phenomena tested. 
The results presented show that the parameter estimate 
accuracy, the quality of model used for the description 
of the phenomenon, depends on the complexity of the 
model. As anticipated, better results are obtainable for a 
less complex model, if only the quality of fit is 
comparable. The final choice of model and parameters 
for mapping important macroscopic parameters (such as 
CBF, CBV, MTT, which are calculated on the bases of 
modelling results) requires detailed medical analysis 
and is left to the decision of the physician.  

The accuracy of the parameter estimates presented in 
Table 3 may be assessed as poor where engineering 
systems are concerned. For biomedical systems, 
however, with all the constraints imposed by limited 
measurements and medical considerations, some degree 
of inaccuracy in the parameter estimates is often 
unavoidable and may be acceptable. 
 
Acknowledgment 
 
The research was supported by the Polish State 
Committee for Scientific Research, grant No 4 T11E 
042 25, 2003-2006. 
 
References 
 
[1] KHOO MCK., (2000): Physiological control 

systems. Analysis, simulation, estimation. IEEE 
Press Series in Biom. Eng. 2000. 

[2] OIKONEN V., (2003): Modelling input function, 
Turku PET Centre Modelling report TPCMOD 
2003. 

[3] FENG D, HUANG SC, WANG X., (1993): Models of 
functions for tracer kinetics modelling with PET. 
Int. J. Biomed. Comput. 1993; 32: 95-100. 

[4] GOLISH SR, HOVE JD, SCHELBERT HR., (2001): A 
fast non-linear method for parametric imaging of 



The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005 
EMBEC'05  Prague, Czech Republic 

IFMBE Proc. 2005 11(1)  ISSN: 1727-1983 © 2005 IFMBE  

 
perfusion by PET. J. Nucl. Med. 2001; 42: 924-
931. 

[5] DAVENPORT R., (1983): The derivation of the 
Gamma Variate relationship for tracer dilution 
curves. J. Nucl. Med. 1983; 24: 945-948. 

[6] MADSEN M T., (1992): A simplified formulation 
of the Gamma Variate function. Phys. Med. 
Biol., 1992, Vol. 37, No 7, 1597-1600. 

[7] Perfusion tutorial, http://medx.sensor.com/ 
[8] CALAMANTE F., (2003):, Quantification of 

Perfusion Using Bolus Tracking Magnetic 
Resonance Imaging in Stroke. American Heart 
Association, Inc. Gadian, A. Connelly: 
Comments, Opinions and Reviews, January 2003, 
pp.1146-1151. 

[9] CALAMANTE F., THOMAS DL., PELL GS., TURNER 
R., (1999): Measuring Cerebral Blood Flow 

Using Magnetic Resonance Imaging Techniques, 
Journal of Cer. Bl. Flow and Metab. 1999, 701-
735. 

[10] SPARACINO G., TOMBOLATO C., COBELLI C., 
(2000): Maximum-likelihood versus maximum a 
posteriori parameter estimation of physiological 
system models: the C-peptide impulse response 
case study, IEEE Trans. On Biom. Eng., Vol. 47, 
No 6, 2000. 

[11] KALICKA R., (2000): Optimal design and 
organization of biomedical experiment, 
Measurement 26 1999, pp.19-44, Elsevier Science 
1999. 

[12] VERES SM., (1991): Structure selection of 
stochastic dynamic systems; the information 
criterion approach. New York, NY; Gordon and 
Breach, 1991

 


