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Abstract: We present a new application of Nakagami 
distribution in medical ultrasonographic (USG) 
imaging. The parameter m from this distribution is 
used for parametric imaging and shows an 
alternatively ultrasound image. The application is in 
USG image analysis or segmentation. Our method is 
based on three dimensional sliding window (2 spatial 
and 1 temporal dimension) and can be used for static 
objects only. We use the envelope of the 
radiofrequency (RF) signal for estimation. Both, the 
simulated and real RF data are used for testing of 
our estimator.  
 
Introduction 

Ultrasound tissue modeling can provide an 
important information that can be used for diagnosis, 
image segmentation, interpretation or visualization. This 
paper describes a statistically based approach for 
ultrasound image representation. Because the 
radiofrequency (RF) signal can be considered as a 
random signal arising from some probability density 
function (PDF), one can estimate the parameters of this 
PDF in order to characterize the underlying tissue. 
There are many models based on various kinds of PDF 
and describing tissue in a more or less complex way, for 
example, Rayliegh or Ricean distribution, K-
distribution, Log-normal distribution [6]. Here, we use 
Nakagami-m distribution because of its complexity and 
versatility [1]. 

The Nakagami-m distribution has found many 
applications in technical sciences. It has been also 
shown by extensive empirical measurements that this 
distribution is an appropriate model for radio links [5]. 
A further growing area of Nakagami-m distribution 
application is the ultrasound tissue characterization [2] 
and adaptive filtering [4]. The envelope of the 
ultrasound radiofrequency (RF) signal could be 
described by this distribution and the parameters can 
then be used to distinguish between various kinds of 
tissues, e.g. detection and identification of abnormalities 
in breast, liver or kidney [1,2].  

The general problem in estimation of the PDF 
parameters is a low number of samples. In this article 
we use the temporal averaging to increase the number of 
samples. We tested our estimator on simulated and real 

data. The method and some results are described below 
and some suggestions for future research are given at 
the end of this article. 
 
Method 

The echo signal can be considered as a sum of 
backscattered and backreflected single echoes from a 
number of scattering points and strong reflectors in the 
tissue [6]. We can express this echo signal (in one 
point/time) with the help of phasors notation. Each 
scatter reflects xk amount of signal with the phase shift 
θk (due to the random location) 
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In most cases, the amplitude xi can be considered 
deterministic and we can rewrite (1) as 
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where Nxii =α are normalized by N . We can 
express the radiofrequency signal as a time signal by 
involving the instantaneous frequency ω0: 

)sin().(.)cos().()( 00 ttXjttXts ir ωω += . (3) 
With the clinical scanner, we can obtain only the 

inphase (first) component. For envelope detection we 
assume the analytical nature of this signal and the 
quadrature (second) component is obtained by the 
virtue of the Hilbert transform (HT). The envelope is 
simply obtained by 
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The PDF, f(S), of the envelope of RF signal, under 

the Nakagami model is given by [1]: 
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where m is the Nakagami parameter and Ω is the scaling 
parameter.  

There is simple estimator for Ω parameter [4]. It 
represents the average power reflected back from tissue. 
There are many methods for estimation of the parameter 
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 m [4], for example, Tolparev-Polyakov (T-P), Lorenz, 
Greenwood-Duran (G-D), Bowman, Cheng-Beaulieu or 
inverse estimators. We have shown in our previous 
work [4,5] that G-D and T-P estimators are good 
estimators for our purpose. In this work we will use 
only the T-P estimator. 

Our aim is to estimate the parameter m from the 
envelope of the RF data, which are not usually available 
in conventional scanners. We’ve used the GE Vingmed 
System5 for data acquisition that enables recording of 
RF data (or IQ data) in off-line mode [9]. We also tested 
the ability of our estimator on simulated data. The 
simulation model is based on 1-D convolution (in axial 
direction) as was described in [4] and is simply 
extended to 2D model by convolution in lateral 
direction (based on the supposed separability of the 
point spread function - PSF). As a convolution 
sequence, a simple approximation of the PSF in lateral 
direction was used [7]. 

The flow chart of our approach is depicted on 
Figure. 1. We use the RF data after the envelope 
detection and therefore no data reduction is used. This 
fact increases the number of samples in our estimator. 

 
Figure 1. Flow chart of our approach - after envelope 
detection the estimation is performed. 
 

First, we’ve tested our estimator on the simulated RF 
data. As the value of parameter m depends on the 
number of scatters [8] within the resolution cell, we 
performed simulations with three regions with various 
scatters density. Figure 2a shows the simulated 
ultrasound envelope image. There are 3 regions with 
1.5, 3.8 and 9.6 scatters per resolution cell. Figure 2b 
shows the distribution of parameter m. The estimation 
was performed within a sliding window sized [61x5] 
pixels. The window is rectangular, because the axial 
resolution in USG is higher than lateral. Therefore the 
size in axial direction can be larger (61 rows). The 5 

columns contain 5 A-scans. Figure 2c shows the profile 
through all columns and center row. The borders 
between regions are more clearly visible, particularly 
between the 1st and 2nd region, in comparison with the 
original image. 

 region 1 region 2 region 3 

a)

b)

c)

d)

Figure 2. a) The simulated image of three regions with 
different number of scatters; b) distribution of m 
parameter; c) profile through all columns and center 
row; d) distribution of Ω (the size of the sliding window 
was [61x5]) 
 
Table 1: Evaluation of parameter m in simulated 
regions: mean ± standard deviation 
window size 

/ region 1 2 3 

31x5 (155) 0.47 ± 0.19 0.90 ± 0.27 1.16 ± 0.40 

61x5 (305) 0.43 ± 0.13 0.83 ± 0.18 1.08 ± 0.20 

91x5 (455) 0.41 ± 0.10 0.79 ± 0.16 1.04 ± 017 

121x5 (605) 0.39 ± 0.09 0.75 ± 0.16 1,00 ± 0.19 

whole region 0.38 ± 0.09 0.75 ± 0.14 1,00 ± 0.18 
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 Figure 2d shows the Ω parameter distribution, which 
characterizes the backreflected and backscattered 
power; it is presented only for completeness. 

Ideally, the brightness (value) within each region 
should be the same, but because of the randomness of 
ultrasound reflections, the value is changing. We can 
evaluate this fact with the help of the mean and 
standard deviation from each region. Table 1 shows 
these values for different window sizes; total number of 
samples is in the parenthesis. One can see that the 
standard deviation decreases with the larger window. As 
the number of samples used for estimation increases, the 
mean value is approaching the ‘true’ value that was 
obtained from the whole region and is shown on the last 
row. From this table we can infer the minimum number 
of samples needed for estimation. 

Farther, we tested our estimator on real RF data. As 
we have seen on simulated data, there is a problem with 
the window size, which determines the number N of 
samples needed for the parameter estimation. When 
increasing N in a homogeneous region, the estimation 
accuracy increases too. But real tissues are highly 
inhomogeneous that requires a small window to 
preserve a reasonable spatial resolution. Essentially, 
there are two possibilities to ensure sufficient samples 
N.  

The real objects are 3D and we can collect the 
adjoining scans to create a 3D moving window. This 
requires (ideally) the position information of each scan 
and algorithm for scan matching (aligning) to eliminate 
blurring by different position of objects in the individual 
scans. This solution is quite computationally 
demanding. 
 A simpler solution consists of using a time window 
over several B-scans without scan matching (Figure 3). 
This means that we use values from several consecutive 
scans to increase number of samples for the estimator 
irrespective of tissue structure. It is clear that this 
method is convenient only for static objects and requires 
a high frame rate. There is a further requirement – the 
physician should move the probe slowly to minimize 
blurring in the estimation process.  
 
Discussion and Results 
 Figure 4 shows ultrasound images of the kidney – 5 
consecutive frames are shown. The physician was asked 
to move slowly through whole kidney. The framerate 
was only 14 frames / second thus the sampling time is 
about 70ms. The original size of one frame (before scan 
conversion) is 2856 rows and 107 A-scans. The center 
ultrasound frequency was 1.7 MHz and the sampling 
frequency 20 MHz. This corresponds to 11 samples per 
wavelength. The axial resolution depends on the 
properties of the ultrasound probe; it is inversely 
proportional to the transducer bandwidth [8]. Typically, 
it is several wavelengths and we can set the size of 
window in the range of tens of rows (with respect to the 
sampling frequency). The number of columns was set to 
3 only, because of poor lateral resolution.  

The various sizes of 3D moving window were 
tested. It was empirically found that maximum useful 

number of B-scans is 5, because of increasing blurring. 
This corresponds to the acquisition time 357ms. 

 
Figure 3. 3D sliding window for estimation of m 
parameter. 
 

Figure 6 shows two parametric images with various 
window sizes; 31x3x5 and 61x3x5. The number of 
samples is 465 and 915, respectively. One can see that 
smaller window leads to a parametric image with higher 
resolution. We can visually compare these images with 
the envelope image on Figure 4 that was obtained as an 
average of five corresponding B-scans. 
 We can see that the m-parametric image can show 
the strong reflections from tissues with different 
acoustic impedance and these borders are more clearly 
visible in comparison with traditional envelope B-scans.  
 
Conclusion 
 A new method of parametric ultrasound imaging 
was presented. It is based on the spatial and temporal 
sample collection for the parameter estimator. We’ve 
shown the correspondence between the original 
ultrasound image and the corresponding parametric m-
image on simulated RF data. The capabilities of 
estimator were also shown on real RF data.  
 As mentioned above, there is another possibility to 
estimate the parameter, which takes into account the 
spatial tissue distribution. This will be a focus of our 
interest in near future.  

 
Figure 4. Result of averaging of 5 consecutive B-scans 
that are shown below on Figure 5. 



The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005 
EMBEC'05  Prague, Czech Republic 

IFMBE Proc. 2005 11(1)  ISSN: 1727-1983 © 2005 IFMBE  

 

a) 

 

b) 

 

c) 

 

d) 

 

e) 

 
  

Figure 5. a) to e) five consecutive B-scans of kidney.  

a) 

 

b) 

 
Figure 6. Distribution of parameter m obtained by 3D 
sliding window method. 5 frames was used in temporal 
dimension. 2D window was: a) 31x3, b) 61x3. 
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