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Abstract: Analysis of functional connectivity 
between different brain areas has become a 
fundamental problem in neuroscience today. Aim of 
this work is to use a neural mass model, consisting of 
several populations arranged in parallel, in order to 
simulate power spectral density of EEG activity in a 
region of interest (ROI) and to study  how this is 
modified by various connectivity patterns among 
ROIs. Results show that i) the proposed model is 
able to mimic the power spectral density of EEG 
activity in different ROIs quite well, acting on its 
external input,  ii) the power spectral density is 
significantly modified by the kind of coupling 
hypothesized among the ROIs. The present study 
suggests that the model can be used as a simulation 
tool, able to produce reliable intracortical EEG 
signals. The possibility to simulate the effect of 
connectivity on EEG power spectral density might 
be exploited in future works, to design new methods 
for connectivity assessment from scalp EEG based 
on physiological models. 
 
Introduction 
 

Brain processing, even during simple cognitive 
tasks, is the result of the interaction among several 
cortical regions, which are reciprocally interconnected 
and functionally integrated. In this context, a crucial 
role in neurophysiology is played by the concept of 
brain connectivity. Knowledge of connectivity is 
considered essential today to understand how the brain 
works, and to assess the role of different regions in the 
achievement of specific cognitive functions. 

Despite the large number of studies appeared in last 
years for assessment of connectivity from EEG/MEG 
data, there is no definite consensus today on the best 
method, nor on the significance of the results obtained, 
and on the possible causes of error.  

An interesting new opportunity, still at the 
pioneering stage, consists in the use of 
neurophysiological models (i.e., models based on 
biology) to derive effective connectivity from real data. 
These models may be useful to establish causal 
relationships among remote cortical regions, to gain a 
deeper insight into the underlying neural processes, and 
to establish some basic mechanisms for signal 
generation (including non-linearities).  

Two main classes of models are used in 
neurophysiological simulation: detailed models, which 
include a description of network dynamics at the level 
of  a single neuron [1], and mascroscopic models. In the 
latter, the state variables represent the dynamics of 
entire neural populations instead of single neurons. This 
dynamics generally emerges from the interaction of 
excitatory and inhibitory sub-populations, arranged in 
feedback. Neural mass-models of cortical columns, 
particularly useful to simulate realistic EEG signals, 
were developed by Lopes da Silva et al.[2] and by 
Freeman [3] in the mid seventies, and subsequently 
improved and extended by Jansen and Rit [4] and 
Wendling et al. [5]. Although neural mass models have 
been used to simulate several aspects of EEG, only a 
few studies used these models to simulate the overall 
frequency content of electrical activity  in a cortical 
region of interest (ROI), or to assess effective 
connectivity among several ROIs participating to the 
same task. 

Recently, David et al. [6] used the Jansen model to 
simulate how the MEG/EEG spectrum can be modified 
by changing a few parameters which describe 
population kinetics, and investigated how these spectra 
can be altered by a connection between two coupled 
cortical areas, and including simple different 
hierarchical arrangements [7]. The authors reached the 
conclusion that both the coupling strength and 
propagation delay have a critical impact of MEG/EEG 
spectra. Then, the authors used signals generated by the 
same model to test the validity of different measures of 
functional connectivity [8]. 

Robinson, Rowe et al. proposed a model to generate 
EEG signals [9], and used this model to estimate 
neurophysiological parameters from EEG [10] in a 
broad range of frequency (0.25-50 Hz). These works 
represent a significant advancement in EEG modelling, 
and provide an understanding of EEG spectra in terms 
of cortical and thalamo-cortical mechanisms. However, 
they are not explicitly devoted to the problem of 
effective connectivity assessment among ROIs. 

The present study continues on the same route, with 
the aim of using a neural mass model [5] to study 
connectivity among cortical regions. Two main 
objectives are pursued. First, we wish to investigate 
whether a model, based on several populations arranged 
in parallel, is able to mimic the frequency content of 
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 real EEG spectra, with a suitable choice of synaptic 
parameters, and acting on the input signals only. This 
step has the objective to choice a model for EEG 
generation in a single ROI, devoted to the problem of 
input/output assessment (hence connectivity), with a 
good compromise between accuracy and complexity. 
Second, we wish to investigate the effect of different 
patterns of connectivity among ROIs (each described 
via the previous model), by using a sensitivity analysis 
on the parameters specifying this connectivity. Here, the 
objective is to reach a deeper understanding of how 
connectivity influences spectra.  

Although the present results are clearly preliminary, 
and still require further validation, they may open a 
promising  route in the problem of estimation 
connectivity using neurophysiological models. 
 
Materials and Methods 
 

Model of one neural population - The model of a 
single population was obtained by modifying equations 
proposed by Wendling et al. [5]. In this model cortical 
activity derives from the interaction among four neural 
groups: pyramidal cells, excitatory interneurons, 
inhibitory interneurons with slow synaptic kinetics, and 
inhibitory interneurons with faster synaptic kinetics (see 
Figure 1).  

Each neural group  receives an average postsynaptic 
membrane potential from the other groups, and converts 
the average membrane potential into an average density 
of spikes fired by the neurons. This conversion is 
simulated via a static sigmoidal relationship. The effect 
of the synapses is described via second order linear 
transfer functions, which convert the presynaptic spike 
density into the postsynaptic membrane potentials. 
Three different kinds of synapses, with impulse 
response he, hi and hg, (see Figure 1), are used to 
describe the synaptic effect of excitatory neurons (both 
pyramidal cells and excitatory interneurons), of slow 
inhibitory interneurons and of fast inhibitory 
interneurons, respectively. 

According to Figure 1, model equations can be 
written as follows: 
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Fast inhibitory interneurons 
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In these equations, the symbols vi represent the 

average membrane potential (i = 0, 1, 2, 3 for the four 
groups). These are the input for the sigmoid function 
which converts it into the spikes (zi, i = 0, 1, 2, 3) fired 
by the neurons. Then, this output enters into the 
synapses (excitatory, slow inhibitory or fast inhibitory), 
represented via the second order linear functions. Each 
synapse is described by a synaptic gain (A, B, G for the 
excitatory, slow inhibitory and fast inhibitory synapses, 
respectively) and a time constant (the reciprocal of a1, 
b1 and g1, respectively). The outputs of these equations, 
which can be excitatory, slow inhibitory or fast 
inhibitory, represent the postsynaptic membrane 
potential (yi, i = 0, 1, 2, 3). Interactions among neurons 
are represented via seven connectivity constants (Ci). 
Finally, p(t) represents a Gaussian white noise with 
assigned mean value and variance, which describes the 
overall density of action potentials coming from other 
regions. This term will be modified to simulate 
connectivity among different ROIs. 
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Figure 1:  Layout of a single population model 
 

Model of a region of interest (ROI) - The previous 
model was used to simulate a single population, the 
dynamic of which ensues from the interactions of the 
four neural subgroups. As shown in David et al. [6], 
however, a single population can produces just a single 
rhythm, i.e., it is unable to simulate the entire frequency 
content of a real EEG. For this reason, the model of an 
overall ROI has been constructed by using three 
populations arranged in parallel. Each population is 
characterized by different values of time constants (i.e., 
of parameters ) and so can produce a different 
rhythm.  In the following, these three populations will 
be denoted with the superscript L, M and H, to represent 
rhythms at low, medium and high frequency. The 
cortical EEG of a ROI (say v

111 ,, gba

out(t)) is obtained as the 
mean value of the membrane potentials of pyramidal 
neurons in the three populations (i.e., averaging quantity 
v0 ). We have 
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Finally, in order to simulate connectivity among 
different ROIs (see below), we also computed the 
average spike density of all pyramidal cells in the three 
populations (say zout(t)). We have: 
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Figure 2:  Example of connectivity between two ROIs 

 

Model of connectivity - A critical problem in this 
study concerns the choice of the model for connectivity 
among different ROIs. In fact effective connectivity is 
model-dependent, and different choices may lead to 
different results. David et al., in a recent paper [7], 
simulated various types of connectivity among two 
cortical areas: “bottom-up”, top-down” and “lateral”. In 
all these patterns the output is the spike density of 
pyramidal cells, but the targets depend on the type of 
connection.  

In the present work we assumed that all connections 
among ROIs are “bottom-up” in type. This choice is 
justified by the fact that we wish to apply our model to a 
generic cognitive task, without entering into a 
hierarchical organization of the different zones 
involved.  

To simulate connectivity, we assumed that the 
average spike density of pyramidal neurons (i.e., the 
quantity zout(t) in Eq.  6) affects excitatory interneurons 
in the target region via a gain factor, G, and a time 
delay, T. This is achieved by modifying the quantity p(t) 
in Eq. 2. In the following, in order to deal with several 
ROIs simultaneously, we will use the subscripts i (or j) 
to denote a quantity which belongs to the ith (or jth) 
ROI, while the superscript k will be used to denote the 
kth population in the same ROI. Hence, the input  
to the kth population in the ith ROI can be computed as 
follows 
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synaptic) ROI, T is the time delay (assumed equal for 
all synapses),  represents a gaussain white noise 
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the sum in the right hand member of Eq. 7 is extended 
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An example of connectivity among 2 ROIs is 
illustrated in Figure 2. In the present study, all time 
delays among  ROIs have been taken equal to 10 ms. 
The gain factors have been assigned different values, in 
order to simulate various patterns of connectivity and 
analyze their influence on the EEG of the downstream 
region.  
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 Results 
 

The first group of simulations has been performed to 
analyze how the EEG power spectral density of a single 
ROI depends on the input noise (i.e., on the quantities 

in Eq. 7) in the absence of connectivity. This 
preliminary analysis is important to understand whether 
the model is able to mimic reliable spectral patterns, 
characterized by different rhythms, by acting on its 
input only. Simulations, not shown here for brevity, 
show that different patterns of EEG, characterized by 
power in different frequency ranges, can be easily 
obtained by modifying the mean value of the input noise 
to the individual populations (see an example in Figure 
3). This result confirms that the proposed model for a 
ROI is general enough to embrace the complexity of 
EEG spectral content, with a suitable choice of its 
endogenous input.  

)(tnk
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Figure 3: Example of manual fitting of an experimental 
ROI (continuous line). The power spectral density of the 
model output (dashed line) is obtained using these 
values for the mean and variance of the three 
populations: =10, =200, =-50 and = 

= =20. 
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In the reality,  the input (Eq. 7) reflects not only 

external stimuli, but above all activity coming from 
other regions participating to the same task and 
functionally integrated. Hence, in the subsequent 
simulations we will consider a network of three ROIs, 
and we will study how their power spectral densities can 
be modified by the pattern of connectivity among them. 
The use of just three ROIs is justified by the wish to 
maintain a moderate level of complexity in this initial 
study. In particular, we will assume that the first ROI 
(subscript i = 1) receives significant input noise but does 
not receive connections from the other regions. 
Parameters of the input noise (mean values and 
variances) have been chosen to mimic the power 
spectral density of cortical activity in an exemplary 
brain region  evaluated from scalp EEG using the 

inverse propagation method described in [11], during a 
finger motor task.    
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Figure 4:  Examples of hypothetical connectivity among 
three regions, simulated by the model of a ROI 
described before.  
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 A comparison between model power spectral density 
of the first  ROI and the experimental one is shown in 
Figure 3, where  parameters used for the noise are also 
reported. By contrast, we assumed that the other two 
ROIs (i = 2, 3) receive negligible noise and are activated 
mainly as a consequence of connections from the other 
regions. The previous choice is the same as to assume 
that region 1 receives most of the external stimulus 
which triggers the motor task, and drives the other two 
regions.  

Three simple examples of how feedforward 
connectivity can modify the EEG power spectral density 
in regions 2 and 3 are displayed in Figure 4. The effect 
of feedback connections among regions 2 and 3 will be 
analyzed in a subsequent work. This figure illustrates 
that the pattern of connectivity is reflected into evident 
and well-detectable changes in the EEG spectrum. In 
the first case the coupling moves from the first region 
(ROI1) to the second one (ROI2) with a MF 
connectivity strength of 10 (low intensity) and a HF 
connectivity strength of 10 (low intensity) and  from the 
second region (ROI2) to the third one (ROI3) with a MF 
connectivity strength of 10 (low intensity) and a HF 
connectivity strength of 50 (medium intensity). 
Connectivity causes evident peaks in the ROIs. In the 
second case the coupling is the same as the previous 
example but with a MF connectivity strength of 50 
(medium intensity) from ROI2 to ROI3. In this case the 
MF peak in ROI3 is more evident. Finally, in the third 
case the coupling is the same as in the previous example 
but with a MF connectivity strength of 120 (high 
intensity) from ROI2 to ROI3. In this case the peak is 
less evident because activity in the second population in 
ROI3 saturates, and this saturation reduces the power in 
the frequency band. This example illustrates the 
apparently paradoxical case in which an increase in 
connectivity strength (MF from ROI2 to ROI3) induces 
a decrease in power density, by causing neurons to enter 
into the saturation state. This is a direct consequence of 
the non-linear sigmoidal relationship used in these 
models to describe the spiking activity of neurons. 
 
Discussion 
 

The study of brain connectivity represents a 
fundamental aspect of neurophysiology today. In fact, 
an integrate understanding of human brain function 
requires not only knowledge of the different areas 
involved in a given task, but also of their reciprocal 
connections and functional links. Various authors in 
past years suggested that neural mass models may 
represent a promising tool for the analysis of this 
problem, in association with data obtained with 
functional neuroimaging techniques (fMRI or PET) 
and/or high resolution EEG or MEG [12]. The present 
work aspires at analyzing the possible use of an updated 
neural mass model, for the study of brain connectivity. 
This study was divided in different phases. In the first, 
we simulated the main characteristics of cortical EEG 
power density in the range 3-50 Hz, by simply acting on 

its input.  To this end, we adopted a model composed of 
three subpopulations arranged in parallel, each 
population being simulated with the model by Wendling 
et al [5], but with different values of its parameters (in 
particular, with different synaptic kinetics). This choice 
is justified by the observation that a single population 
can generate a power density spectrum with only one 
peak and quite a narrow frequency band. The choice to 
pack several populations in parallel within the same 
ROI, and adopt a linear combination of their activity (or 
of their membrane potential) as an output for the ROI, 
agrees with the choice adopted by David et al. recently 
[6]. 

The first purpose of our simulations was to verify 
whether the proposed model for a ROI is able to 
simulate different EEG PSD, by simply assuming a 
different input noise. This was a necessary requisite to 
use the model as an instrument to generate reliable 
signals and/or to infer connectivity from data. The 
subsequent step was to test how connectivity may 
modify EEG power density. Although in the present 
work we displayed just a few exemplary simulations  
these clearly show that connectivity induces evident 
changes in spectral content.  

The example of feedforward connectivity among 
ROIs, depicted in Figure 4, resemble those shown in 
David et al. [6]. However, there are significant 
differences between our model of connectivity and that 
used by these authors. These differences may be 
reflected in different circuits for the interpretation of 
data.  First, in David et al.  connectivity from one ROI 
to another is described only by means of a constant gain 
factor and a time delay. By contrast, we used three gain 
factors, assuming that the connection strength may vary 
depending on the sub-population involved (i.e., with 
slow, medium or fast kinetics). The main consequence 
of this choice is that, in our model, a presynaptic ROI 
may induce a rhythm in a different frequency-band of 
the target  ROI, i.e., it is not necessary that the pre-
synaptic ROI contains the same rhythm that it induces 
downstream.  This is evident, for instance, in Figure 4, 
where a rhythm at medium frequencies appears in the 
ROI 2, although this was not evident in ROI 1. We 
judge that this possibility is important to arrive at a 
proper understanding of  brain connectivity. In our 
approach, connectivity may be described in the 
frequency domain: it is not a simple scalar number, but 
a more complex entity which depends on the particular 
rhythm (or frequency band) considered.  

A second major difference between our model of 
connectivity and that by David et al. is that these 
authors maintained a constant average input to each 
ROI, i.e., they preserved mean value and standard 
deviation of presynaptic input independent of the 
connection strength (in their work coupling among two 
ROIs  just modifies the ratio of the input attributable to 
the source area vs. the extrinsic noise). In other words, 
coupling does not modify the equilibrium activity of 
each population. By contrast, in our approach a strong 
connection may significantly modify the average 
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 activity. This has strong consequences, which are 
underlined in Figure 4. In certain cases, increasing 
connectivity may lead to a saturation of the post-
synaptic population. This saturation may be reflected in 
a decreased variance of all quantities in the population 
and so in a reduced power density in the given 
frequency band. Hence, in our study non-linear effects 
become much more evident than in former ones.  
 
Conclusions 
 

The present study suggests that the model can be 
used as a simulation tool, able to produce reliable 
signals with different patterns of EEG power spectral 
density, and to mimic the effect of different imposed 
configurations of connectivity. The use of the model as 
a simulation tool can be useful in future studies, for 
instance to provide artificial signals to test methods 
actually adopted to infer connectivity from data [11]. 
The possibility to simulate the effect of connectivity on 
EEG power spectral density might be exploited to 
design new methods for connectivity assessment from 
high resolution scalp EEG, based on physiological 
underlying models, instead of on empirical or data-
driven models.  
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