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Abstract: Time series generated from nonlinear 
dynamical systems can exhibit statistical 
nonstationarity, despite that their parameters in the 
dynamical process remain all constant. In other 
words, dynamical stationarity of the time series does 
not indicate its statistical stationarity. The aim of 
this study is to investigate the dynamical 
nonstationarity of the EEG in patients with 
Attention-Deficit/Hyperactivity Disorder (AD/HD) 
during cognitive tasks. We hypothesize that AD/HD 
patients have difficulties in maintaining a specific 
cognitive state and thus their EEGs exhibit highly 
frequent dynamical changes. To test this hypothesis, 
we recorded EEGs from 16 adolescent subjects with 
AD/HD and 18 age-matched healthy subjects in a 
resting state and during cognitive tasks, and 
estimated the mean duration of the dynamically 
stationary states for both groups. We found that the 
AD/HD patients had a significantly shorter duration 
of dynamically stationary states than those of 
controls. This result indicates that AD/HD patients 
exhibit more frequent dynamical changes in the 
brain than controls, which might reflect the more 
frequent cognitive-state transition in the AD/HD 
brain. This finding suggests that dynamical 
nonstationarity of the EEG is a useful tool for 
diagnosis of AD/HD.  
 
Introduction 
 

Attention-Deficit/Hyperactivity Disorder (AD/HD) 
is a common behavioral disorder which is characterized 
by inattention, hyperactivity, impulsivity, and 
aggressiveness. AD/HD affects 4-7% of school children 
and 2-3% of adults, resulting in troubles in school, 
familial, and social life. Although there are lots of 
studies reporting the morphological and functional 
abnormalities in AD/HD patients, the pathogenesis of 
the disease is still not clear. Furthermore, because there 
is no definite diagnostic tool for determining the 
presence of the disease, the diagnosis of AD/HD 

primarily depend on questionnaires and psychological 
evaluations.  

There have been some EEG studies on AD/HD 
patients using Fourier transformation analysis such as 
discriminant function analysis (2) and absolute/relative 
power ratio analysis (3) to find that linear analysis of the 
EEG can classify the AD/HD (and possibly its subtypes) 
and normal controls with accuracy of 80% (4).  

Recently, nonlinear dynamical methods appear to 
be a promising tool for investigating brain dynamics. 
The application of these methods to EEG in patients 
with the neurological and psychiatric disorders has 
proved an effective and reliable means to diagnose 
various brain diseases and to quantify the progress of 
the diseases (for review, Jeong, 2004; Stam, 2005).  

In this talk, we introduce the concept of dynamical 
nonstationarity of the time series to examine the 
dynamical change in EEG recordings. Time series 
generated from nonlinear dynamical systems exhibit 
nonstationary (i.e. time-dependent) based on statistical 
measures including the mean and variance, despite that 
their parameters in the dynamical process remain all 
constant. It indicates that statistical stationarity of the 
time series does not indicate its dynamical stationarity. 
Given that the EEG is possibly gnenerated by the 
dynamical, cognitive process of the brain, dynamical 
nonstationarity of the EEG can reflect on state transition 
of the brain. In this assumption, Le Van Quyen et al. 
(2001) and Dikanev et al. (2005) have applied this 
method to investigate the possibility of seizure 
prediction using EEGs in epileptic patients (5, 6).  

The aim of this study was to examine the 
characteristic time length of dynamically stationary 
EEG epochs in AD/HD patients in a resting state and 
during cognitive tasks. We hypothesize that AD/HD 
patients have difficulties in paying attention to one thing 
for long and therefore they possibly exhibit more 
frequent dynamical changes in EEGs than normal 
controls, which implies more frequent dynamical 
changes in AD/HD brains. To test this hypothesis, we 
recorded EEGs in 16 channels from 16 adolescent 
patients with AD/HD and 18 age-matched normal 
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 subjects in a resting state (5 mins.) and during cognitive 
tasks (10 mins.), and estimated to compare the 
characteristic time length, which is defined as the mean 
duration of a dynamically stationary EEG epoch, in both 
groups. Short characteristic time length indicates more 
freqeuent occurrence of dynamical changes in EEGs. 
We also compared the properties of dynamical 
stationarity with those of statistical stationarity in EEGs.  
 
Materials and Methods 
 
Dynamical and Statistical nonstationarity analysis 

The importance of the dynamical nonstationarity 
analysis is to identify the dynamical structure of the 
data, instead of the commonly used statistical one. 
Several methods to detect dynamical changes between 
two or within intervals of time series, including 
recurrence plot (8), statistical test on the reconstructed 
phase space (9), recurrence time statistics (10), space 
time index plot (11), nonlinear cross prediction (12), 
and attractor density distribution (13). In this study, we 
used attractor density distribution method having 
relatively low computational expense and sensibility in 
detecting even slight dynamical changes, compared with 
other methods.  

 
Distance of Attractor density: This method is based 

on comparison of the density of the attractor between 
two successive intervals within the time series (13). The 
Phase space reconstruction provides a multi-
dimensional topology of the underlying dynamics of the 
system. A bundle of trajectories in the reconstructed 
phase space is called the attractor, which implicates 
dynamics underlying the time series.  

Let the x(i) be the ith value of the given time series 
X, and i be an integer indexing the time position of the 
time series x(i). First, we normalized the data into S bins 
and compared several intervals under the same 
conditions, explained as follows:  

min

max min
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In eq. 1, xmin and xmax are the minimum and 
maximum value of two successive intervals to be 
compared, respectively. S is an integer parameter, and 
the Floor is a function which returns the next lower 
integer of its input. It requires that S(xmax) = S-1. From 
the normalized and binned time series s(i)=S(x(i)), we 
proceeded on a phase space reconstruction using delay 
coordinate according to the Takens’ theorem (14), as 
described in eq. 2: 

{ }(), ( ),..., ( ( 1)* ) , 1... ( 1)*iV s i s i s i d i N dτ τ τ= + + − = − −  (2) 

Vi is a d-dimensional vector, and N indicates the total 
number of points in the interval. d and τ are the 
embedding dimension and time delay, respectively, 
which are important phase-space reconstruction 
parameters under the constrain τ ≥ 1. The values of the 
parameters S, τ and d were determined empirically 
based on both sensibility to dynamical changes and low 

computation consumption, and kept constant for all 
analyses. The following step was to consider our 
partitioned the phase space, and summed the population 
of point in each bin or hypercubes, and estimated the 
frequency occupation distribution function. We assigned 
an identification number, Ii to each vector Vi, depending 
on its unique base S arithmetic writing converted into 
base 10 as follow: 
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Thus, each bin has a unique identification number, easy 
to link to a vector Vi. The number Vi(k) in eq. 3 is the 
kth component of the vector Vi which is equal to or 
larger than 0 and lower than S-1. For the evaluation of 
the distance between two intervals, we used the well 
suited χ2 to compare distribution functions: 
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where L is the same total number of bin of the 
distributions Q and R which are called base and test 
case distributions, respectively. Finally, we normalized 
outputs dividing by 2*L, which is the theoretical 
maximum value taken by χ2. 

Statistical analysis: To investigate the usefulness of 
the dynamical stationarity, we first should compare it 
with conventional weak statistical stationarity based on 
the mean and the variance of the segments in EEGs. 

Distribution of the quasi-stationary time interval: 
The EEGs were divided into L non-overlapping 
segments. Dynamical and statistical stationarity were 
examined within the interval and its consecutive one. 
The statistical outputs were used taking the absolute 
value of the difference normalized by the respective 
maximum value. For such relative comparisons of the 
interval, it is useful to introduce in a significance 
deviation value σ to enhance the contrast between 
outcomes (17), given in equation 7: 

( )( ) x ii µσ
δ
−

=  (5) 

Where, µ and δ are the mean and standard deviation 
of the EEG under study. We defined a crossing 
threshold signal as the change of dynamical state, 
defined by: P[ σ, k ] ≤ p, where P is the Chi-square 
cumulative distribution function with k degree of liberty 
at the value of significance deviation σ. The crossing 
threshold signal indicates a percentage of the standard 
deviation above the mean of the interval. Dynamics 
transition points were used as flags to calculate inter-
quasi-stationary intervals, and thus we obtained the   
distribution of the quasi-stationary time interval for the 
EEG. The different techniques used for the analysis 
allow us to observe a distribution of stationary time 
lengths for each channel of the EEG for each subject. 
The distribution of the channels of the weighted average 
of the stationarity time length distribution was 
calculated. The weighted Average is simply computed 
as follows in eq. 6: 
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Where Ci is the channel considered, and fi,j the 
frequency of the time length j of the channel Ci, and j a 
integer belonging to [0,FT] and a value of the time 
length, FT the maximum time length found in the 
system. The each time length and average time length 
was obtained by multiplying j by the number of points 
considered for an interval L, then divided by the 
sampling frequency(250 Hz). 

Parameters estimation: We partitioned the EEG in 
5 seconds (L = 1,250 points) non-overlapping intervals. 
The use of non-overlapping intervals have the estimated 
values highly depend on the number of point L: too few 
points might render the reconstruction obsolete, and too 
many points can hide short variations. The embedding 
dimension d and the time delay τ for the phase space 
reconstruction (eq. 2) were deduced from previous 
studies (8, 13, and 15), i.e. the first minimum of the 
mutual information for determination of τ (15). We 
found  d = 5 and τ =30 to be good values to produce 
reliable results considering topology reconstruction of 
the attractor and the small number of points of intervals. 
We used S = 14 ±5 for the density attractor analysis 
(13); this variable defines the size of the neighborhood 
in attractor analysis. We used the values k = 7 for the 
Chi-square cumulative distribution function degree of 
liberty, and deduced p = 0.02 (Chebyshev’s inequality) 
for the p-value or threshold, and 0.32 was used as the 
crossing threshold signal. 

EEG recordings: EEGs were recorded in 16 
channels from 16 adolescent subjects diagnosed as 
AD/HD by by DSM IV and 18 age-matched healthy 
subjects in a resting state with eyes-closed and eyes-
opened during auditory and visual tasks (1.5 minutes 
per each). EEG signals were sampled at 250Hz, and 60 
Hz and 0.1-125 Hz band-pass filters were used to reduce 
noise. Simulations were performed using MATLAB 
7.0.4 on a 1.6 GHz Pentium 4 computer platform. 
 
Results 
 

We estimated the average of time length on each 
electrode in AD/HD patients and normal subjects as 
shown in Figure 1 and 2. Figure 1 shows that AD/HD 
patients have shorter time length of dynamical 
stationary EEG than controls, particularly at channel C3, 
C4 (central), P3, P4 (parietal) and O1, O2 (occipital), in 
a resting state with eyes closed and during the auditory 
task. The mean value of the time for both states was not 
higher than 2.6 index of time (i.e. 13 seconds). This 
result indicate that AD/HD patients exhibit more 
frequent occurrence of dynamical changes in EEGs and 
thus higher degree of dynamical nonstationarity than 
healthy subjects.   

AD/HD patients have shorter mean duration of 
statistical stationary EEGs than normal controls, 
particularly in F1-F8 region (frontal), as shown in 
Figure 2 (a). However, Figure 2 (B) does not exhibit 

distinction between two groups. Furthermore, the mean 
values of the time for Fig. 2(A) and 2(B) were higher 
than 5 index of time (i.e. 25 seconds).  

 

 
Figure 1: Mean of dynamical stationarity time length of 
control and AD/HD subjects, for resting Eyes closed (A) and 
Auditory task (B) state, over all EEG channels. Interval 
number of point is 1250 (5 seconds), d = 5, τ =30, k = 7. 
 
Discussion 
 

In this study, we found that AD/HD patients have 
shorter characteristic time length of dynamical 
stationary EEGs than healthy normal controls during 
auditory task. This finding suggests that the degree of 
dynamical nonstationarity can be a good measure for 
quantifying the frequency of occurrence of dynamical 
changes in EEG which reflect state transition of the 
brain. Abnormally frequent state transition of the brain 
in AD/HD results in high degree of dynamical 
nonstationarity. We suggest that this measure might be a 
good tool for diagnosing and quantifying AD/HD. This 
finding implicates some association between dynamical 
changes in EEGs and the state transition of the brain. 
More specifically, in AD/HD case, the attention and 
hyperactivity symptoms should be closely related to 
instability in the stationary dynamics of the brain. 
Therefore, the stationarity should exhibit the shorter 
time length than normal controls. We should note that, 
in almost all cases, statistical stationary segments are 
longer than dynamical one, and the statistical 
stationarity clearly do not imply the dynamical one. 
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Figure 2: Mean of statistically stationarity time length of 
control and AD/HD subjects in a resting condition with eyes 
closed (A) and during auditory task (B) over all EEG 
channels. The number of data points in an interval is 1,250 (5 
seconds) with d = 5, τ =30, k = 7. 
 

For future work, we should increase the number of 
subjects and the duration of the resting and cognitive 
tasks, to obtain a better statistical estimation of the two 
populations. Furthermore, since AD/HD is a very 
heterogeneous disease, it is very critical to differentiate 
subtypes and related disorders using this method. We 
also work on associating more dynamical and statistical 
stationarity tests to the study, since they are not all 
totally equivalent. However, some of these tests (10, 11, 
and 12) require far more points for the phase space 
reconstruction (20 seconds intervals at 250 Hz sampling 
frequency) to keep their interpretability, which would 
lead us to the use of sliding and overlapping intervals 
method, also benefic for presented methods. The phase 
space reconstruction scheme could also switch with one 
more privileged by biologist for physiological data, the 
threshold-crossing interspike interval (17).   
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