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Abstract: The aim of this study is to evaluate the 
influence of image enhancement techniques on a 
computer-aided detection system (CAD) used for the 
microcalcification detection in mammograms. The 
enhancement techniques which are utilized based on 
conventional and more sophisticated image analysis 
techniques. The contrast limited adaptive histogram 
equalization (CLAHE) and the local range 
modification (LRM) algorithms belong to the first 
category. In addition, techniques based on the 2-D 
redundant dyadic wavelet transformation (RDWT) 
are studied. Two mammographic datasets, the 
Mammographic Image Analysis Society (MIAS) and 
the Nijmegen databases are used for the evaluation 
of the CAD system performance. The highest 
detection performance is achieved by the 
enhancement algorithm LRM.  
Keywords: Mammography image enhancement, 
microcalcification detection, CAD 
 
Introduction 
 

Mammography is a well-established method for the 
detection of breast cancer in its early stages. 
Microcalcification clusters are considered as a 
significant early sign of breast cancer. However, the 
complexity of the mammographic images due to the 
presence of multiple background and overlapping 
structures, makes its interpretation difficult. Although 
recent computer aided detection (CAD) schemes 
achieve high sensitivity levels, their performance could 
be further improved by utilizing preprocessing 
techniques. 

Several mammogram preprocessing algorithms have 
been utilized in CAD systems. A methodology proposed 
by Pizer et. al. [1] is based on histogram equalization, 
which by the description of image contrast thresholds 
defines the contrast-limited adaptive histogram 
equalization (CLAHE) technique. Lure et. al. [2] 
employ an unsharp masking algorithm while Morrow et. 
al. [3] suggested a region-based approach named 
adaptive-neighborhood contrast enhancement which is 
based on the differentiation of foreground and 
background areas of the examined structure. Strickland 
et. al. [4] and Laine et. al. [5] have used discrete wavelet 
transforms (DWT) with biorthogonal spline filters. The 
selection of distinct decomposition levels produces 

enhanced mammographic versions. Fractal [6] and 
fuzzy logic [7] methodologies are also approaches 
resulting in sophisticated enhancement of breast images. 
However, mammogram enhancement techniques 
support not only CAD systems but they also result in 
improved quality images which can be viewed by the 
doctors. Such use of mammographic images is reported 
by Sivaramakrishna et. al. [8] in which a significant 
improvement in radiologist’s detection score has been 
achieved with the utilization of several enhancement 
algorithms.   

In this study, microcalcification enhancement 
schemes have been employed in the preprocessing stage 
of a CAD system [9]. The CLAHE technique and the 
local range modification (LRM) algorithm are two 
approaches based on spatial analysis and histogram 
equalization techniques. A 2-D redundant dyadic 
wavelet transform (RDWT) is utilized modifying the 
fraction of the coarseness and the detailed portion of the 
mammogram. By the selection of different image 
decomposition levels, the contrast of the initial 
mammogram is improved. In addition, wavelet 
coefficients are appropriately adjusted using linear 
stretching and wavelet shrinkage techniques. The 
performance of the CAD system is evaluated for the 
variant image enhancement techniques by the utilization 
of a receiver operating characteristic (ROC) analysis 
using two mammographic databases, the 
Mammographic Image Analysis Society (MIAS) and 
the Nijmegen database.  
 
Materials and Methods 
 

The adaptive histogram equalization algorithm is a 
well established contrast enhancement technique which 
has been utilized in several medical image applications 
[1]. It is based on the histogram equalization technique 
which applies in regions (blocks) of the original 
mammogram. However, due to specific weaknesses 
such as the intensity discontinuities at the block borders, 
it is replaced in most cases by the CLAHE 
methodology. CLAHE subdivides the image into n×m 
blocks, calculating the histogram of each such block. 
Every region is then equalized by choosing a 
monotonically nondecreasing gray level transformation, 
mapping the histogram of a desired distribution. 
However, the enhancement of a block is limited by the 
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 selection of a clipping level, defined as a multiple of the 
histogram average. Those pixels exceeding the clip limit 
are equally redistributed across the histogram, their 
value being finally adjusted according to interpolation 
between the histograms of neighboring regions. The 
clipping factor can help, if properly adjusted, to reduce 
noise amplification in poorly contrasted areas. 

The mapping function at each pixel is proportional 
to the local cumulative histogram. Contrast 
enhancement is proportional to the slope of the mapping 
function. For slope equal to one, no enhancement is 
achieved, while higher values of the slope result in 
image enhancement. In homogenous areas, the 
histogram exhibits high peaks and thus a narrow range 
of input grayscale values is mapped to a wider range of 
output grayscale values. In such a case, the noise in 
homogenous regions is over-enhanced. The limiting 
slope of the mapping function is determined by the user. 
The clipping limit C is S times the average histogram 
value, since a mapping function with a constant slope of 
one corresponds to all histogram values equal to the 
same average number of pixels. Thus, the critical 
parameter in the application of CLAHE algorithm is the 
definition of a clip limit which in our case is set equal to 
0.5. After its selection, each histogram is redistributed 
so that its height does not exceed the clip limit.  

 
Local range modification (LRM) [3] also utilized. In 

this method the output intensity of each pixel, z, is 
related with the input intensity of the pixel with the 
following relation: 

,bawz +=  (1) 
 
where a and b are parameters which depend on local 
contrast.  

Those parameters are calculated for overlapping 
blocks of the image and are then estimated by using 
interpolation for each pixel position. The spatially-
dependent parameters of the image are first computed 
and afterwards these parameters are applied to the 
original mammogram. Thus, the original image is 
divided to non-overlapping blocks. The size of the block 
(s) is a parameter that depends on the resolution and 
structure of the image. The maximum and minimum 
grayscale values Hi and Li are computed for each block. 
For the half-overlapping blocks having block size 2s the 
maximum and minimum grayscale values Mi and Ni are 
calculated. These values are the largest Hi and smallest 
Li values, respectively, for the four s-sized blocks 
contained within each 2s-sized block.  

The estimated local maximum and local minimum 
values for each pixel are calculated by interpolating the 
Mi and Ni values at the four surrounding grid points: 
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where sx ,and sy are the horizontal and vertical distances 
of the sample point, respectively from the (M1,N1) grid 
point, M1, M2, M4, M5 and N1, N2, N4, N5 are the 
maximum and minimum intensity values of the four 
surrounding grid points. The output value for each pixel 
is then calculated by linear stretching, using the local 
maximum and local minimum values: 
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Linear stretching rescale the local input grayscale 

range (min,max) to the full available (0,L-1) grayscale 
range where L is the number of available output 
grayscale levels. The critical parameter in LRM is the 
local neighborhood length which corresponds to the 
block size. We selected the 51×51 pixels block size 
which provided the highest sensitivity to the detection 
of microcalcification.   

The wavelet transform which is employed is a 2-D 
redundant - overcomplete dyadic wavelet transform [5]. 
This transformation is actually a uniform sampling of a 
corresponding 2-D Continuous Wavelet Transform  
which uses two oriented prototype wavelet functions 

)y(x,2ψy),(x,1ψ  given by:  
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where ),( yxθ  is a smoothing function approximating 
the Gaussian.  

The wavelet transform assumes that the input 
discrete image ),(1 yxfS  is obtained by sampling a 
continuous 2-D function ),( yxf , smoothed at the finest 
scale: 
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where ),( yxφ  is a smoothing scaling function and S is 
the approximation operator. The dilations of the two 
oriented wavelet functions at scale l are defined as: 
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The 2-D dyadic wavelet transform of a discrete 

image ),(1 yxfS  is a uniform sampling of the 
continuous representation defined as: 
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where the maximum value of the coarsest (largest) 
dyadic scale j  is equal to 1)(log 2 +N and Jj ≤≤1  
for a N×N input image. 

Thus, the 2-D dyadic wavelet transform 
representation consists of the discrete coefficient images  
{ }),(),,( 2

2
1
2 mnWmnW jj  which are proportional to the 

sampled horizontal and vertical components of the 
multiscale gradient vector ∇ ∗( )( , )f x yθ

2 j  
and the 

discrete approximation (smoothed) image S f n mJ2
( , ) . 

Since the coefficient subimages have the same 
dimension as the original image, no sub-sampling of the 
wavelet coefficients was performed.  

The original image can be exactly reconstructed 
using the inverse 2-D dyadic wavelet transform. The 
image gradient magnitude is related to the contrast 
values since the magnitude expresses the relative 
change of image intensity at each point.  

The linear transformation function in RDWT linear 
stretching extends linearly the multiscale gradients. In 
this way, all regions of the image are enhanced 
similarly. For an image decomposed at J scales, the 
enhanced gradient magnitudes are given as: 
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e
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where ),( nmM e
s is the enhanced value of the gradient 

magnitude at position ),( nm  of the scale s and ks is the 
stretching factor ks >1 which could vary in different 
scales in order to improved structures or features of 
different sizes. For simplicity ks was set equal to 20 for 
all scales.  

The wavelet transform shrinkage methodology is a 
nonlinear transformation function used to improve 
mainly the contrast of low-contrast features. Utilizing 
different gain parameter values in the scales, the 
contrast of the structures with specific size is enhanced. 
In RDWT shrinkage methodology for denoising, the 
wavelet coefficients are set equal to zero when their 
magnitude is less than a threshold:  
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where ),( mnM d

s  are the modified magnitude gradients, 

sk  is the gain parameter and sT  is the threshold at scale 
s . We have chosen 10=sk  and 60=sT  for all scales.   

The last RDWT approach is the one in which a 
background approximation is utilized. In the specific 
approach in addition to the 2nd and 3rd wavelet levels, a 
proportion of the coarse information included in the 4th 
wavelet decomposition level is utilized. The additional 
level contains large structures such as the breast tissue 
area, a possible high density region and the background 
area. 

 
The CAD system 

 
The system is presented in Ref. [9], however, here a 

short description is given. The segmentation module of 
the CAD system makes use of morphological and 
intensity-based functions aiming at the description of 
mammogram objects which are probable 
microcalcifications. For each individual object and 
related clusters, 54 features related with the intensity, 
shape and textural properties are initially extracted. A 
feature selection procedure, based on ROC analysis, 
resulted in the selection of the most discriminative 
feature set consisting of 22 features. In this work, the 
same feature set was utilized for the analysis of all the 
enhanced mammograms even though the discrimination 
power of each feature might change after the 
enhancement process.  

The classification system that was employed for the 
reduction of the false positive findings was a 
feedforward backpropagation multilayer perceptron. Its 
architecture includes two hidden layers composed of 15 
and 10 sigmoid nodes, respectively. However, due to 
the high dimensionality of the feature vector, principal 
component analysis (PCA) was employed to eliminate 
the features that contribute less than 3% to the total 
variation of dataset. After the PCA feature reduction 
procedure, the feature vector was fed to the neural 
network classifier which was trained using a quasi-
Newton, one-step secant (OSS) algorithm. A two-fold 
cross validation methodology was used as a validation 
procedure. The overall performance of the CAD system 
was the average of the performances on the test sets 
from both data folds. The performance was evaluated 
using the area (AZ) under ROC curve. The network 
training and testing processes were repeated ten times 
(with different initial conditions) measuring the 
network’s reproducibility. For each series, the 
maximum, average and the standard deviation value of 
AZ were calculated. These measures provide useful 
details about the performance and the stability of the 
neural network classifier.     

The mammographic databases are the MIAS [10] 
and the Nijmegen [11] databases. The first contains 20 
mammograms (spatial resolution: 50 µm, grey depth: 8 
bits) including 205 annotated microcalcification 
clusters. The Nijmegen database consists of 40 
mammograms (spatial resolution: 100 µm, grey depth: 
12 bits) containing 105 annotated microcalcification 
clusters. To overcome the resolution difference a 
resampling technique is followed converting the 
resolution of the second database to 50 µm.  
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 Results 
 

Each enhancement technique is applied to the 
original mammogram. The segmentation and the feature 
extraction procedure takes as input the enhanced 
mammogram. The LRM technique resulted in the 
highest detection performance for both databases. 

 
 
Figure 1. Receiver operating characteristic curves for 
the LRM enhancement methodology for both databases. 

 
For the Nijmegen database the achieved score is 

AZ=0.932 and for the MIAS database is AZ=0.915 (Fig. 
1). The detection performance of the CAD system for 
each enhancement technique is reported in Table 1. In 
this table, the performance of the CAD system without 
the utilization of the enhancement technique is also 
presented.  

 
Databases Enhancement 

Methodology MIAS (AZ) Nijmegen (AZ) 
Without 
enhancement 0.866 0.825 

LRM 0.932 0.915 
CLAHE 0.837 0.802 
RDWT Linear 
stretching 0.916 0.904 

RDWT 2nd, 3rd & 
Background 0.891 0.887 

RDWT Shrinkage 0.841 0.828 
 
Table 1. The performance of the CAD system with the 
use of enhancement techniques for both mammographic 
datasets. 

 
The enhancement methodologies, in most cases, 

result in the improvement of the detection ability of the 
CAD system. In addition to the LRM’s performance, the 
RDWT stretching and the RDWT of the 2nd, 3rd and the 
approximation of background achieved higher detection 
scores than the performance of the unenhanced 
mammography. 

The RDWT stretching AZ scores are 0.916 and 0.904 
for MIAS and Nijmegen databases, respectively. A 

lower score, 0.891 for MIAS and 0.887 for Nijmegen 
databases, is obtained when the RDWT methodology 
utilizes selective reconstruction of the 2nd and the 3rd 
decomposition levels and approximation of the 
background. The CLAHE and the RDWT shrinkage 
technique provided lower AZ values compared to the 
score of the system without enhancement.   

 

 
 
Figure 2. Maximum, average and STD AZ values for the 
proposed enhancement techniques.  

 
The average, maximum and STD for AZ for the 

proposed preprocessing methods, for both 
mammographic databases, are depicted in Fig. 2. The 
LRM technique results in the highest maximum AZ 
value and average AZ values. These scores are obtained 
with the lowest STD values of the AZ scores, a fact 
which increases the reliability of the enhancement 
process based on its high detection stability. The lowest 
maximum and average AZ scores and the highest STD 
value are obtained by CLAHE which seems to be 
ineffective in the enhancement of the microcalcification 
clusters.  
 
Discussion 
 

Microcalcification enhancement algorithms have 
been employed in the preprocessing module of a CAD 
system aiming at the improvement of its detection 
performance. The evaluation of our previously 
developed CAD system was measured by ROC analysis 
in two well known annotated mammographic databases, 
the MIAS and the Nijmegen databases. The CLAHE 
technique and the LRM algorithm were selected since 
they have been previously utilized in mammographic 
enhancement studies. Also, a 2-D redundant dyadic 
wavelet transform was utilized modifying the fraction of 
the coarseness and the detailed portion of the 
mammogram. By the selection of specific 
decomposition levels, mainly the 2nd and the 3rd, the 
microcalcifications contrast is improved. In addition, the 
linear stretching and wavelet shrinkage techniques, 
which are wavelet-based techniques, were examined. 
The use of this preprocessing module was followed by 
segmentation, feature extraction, and classification to 
reduce the false positive samples.  

Our work demonstrated that LRM resulted in the 
highest detection performance in both mammographic 
databases. The second in performance enhancement 
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 technique was the RDWT linear stretching algorithm 
that provided AZ scores about 1.7% and 1.2% lower 
than those from the LRM case, for each database 
respectively. The RDWT shrinkage and the CLAHE 
techniques resulted in scores even lower than those 
achieved by the system without the utilization of the 
preprocessing stage. The first technique resulted in 
AZ=0.841 and AZ=0.828 for the MIAS and the 
Nijmegen databases, respectively while the other are 
resulted in AZ=0.837 and AZ=0.802, for the two 
databases, respectively. The RDWT background 
approximation approach reached higher AZ scores than 
the unenhanced mammogram, but significantly lower 
(about 4.4%) than those achieved by the LRM 
methodology.   

Many research groups have paid attention to the 
development of efficient CAD systems for the detection 
of microcalcification clusters in mammography. The 
evaluation of a specific module of the CAD system, 
such as the preprocessing stage, is very rare in CAD 
reports, but rather the overall CAD’s detection 
performance is reported. In [8], the radiologist’s most-
preferred (49%) microcalcification enhancement 
method was the adaptive neighborhood contrast 
enhancement algorithm which is similar to LRM 
technique. A wavelet-based approach followed with the 
preference to 28% of the mammograms and the 
unenhanced mammogram version which is preferred in 
13% of the cases. In another study reported by 
Hemminger et. al. [12], a histogram-based intensity 
windowing technique appeared superior to the CLAHE 
and to the unprocessed mammogram. Even though the 
above studies provide a systematic categorization of the 
enhancement techniques based on their detection ability 
direct comparisons of the efficiency of the enhancement 
methods is not feasible. 
 
Conclusions 
 

In this study five enhancement methodologies have 
been used to improve the performance of an already 
reported CAD system [9]. The best performance was 
achieved by the utilization of LRM and RDWT linear 
stretching wavelet-based techniques. The CAD system 
is evaluated using two of the most known 
mammographic datasets (MIAS and Nijmegen). 
Although the achieved detection performance is 
satisfactory, further analysis must be carried out using 
larger mammographic datasets. Further investigation is 
needed in order to specify the parameters of 
segmentation which influence the detection 
performance of the CAD system.  
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