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Abstract: Approximate Entropy (ApEn) is a 
measure of the complexity of time series. This work 
shows that the choice of the sampling frequency (fs) 
of the electrocardiogram (ECG) from where RR 
time series are derived affects the ApEn of these time 
series. The main effect of fs is the presence of a bias 
in the ApEn that can be very high in certain 
applications (especially when dealing with RR time 
series with low variance).  The bias decreases 
monotonically by increasing fs. Moreover, the bias 
decreases by increasing the standard deviation (SD) 
of the time series, although the decrease is not 
monotonic but behaves as a damped oscillatory 
pattern.   
 
Introduction 
 

Approximate Entropy (ApEn) is a measure that 
quantifies the regularity of a time series. This index has 
been developed to classify complex systems with 
underlying deterministic chaos or random processes [1]. 

Approximate Entropy can be computed in a general 
way as: 
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where N is the number of samples of the time series, m 
is the window’s length and k is the threshold. Moreover: 
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where Np is the number of vectors X(j) (j from 1 to N-
m+1) whose Euclidian distance to X(i) is lower than 
k·SD, being X(i) a vector with m samples defined as 
X(i)=[x(i), x(i+1),…,x(i+m-1)] and SD the standard 
deviation of the time series. x(i) is the time series whose 
ApEn is being computed.  

There is scientific evidence that under certain 
pathologies, the ApEn of the RR time series is different 
when comparing to that of healthy subjects. The main 
advantage of ApEn is its ability to quantify the 

complexity of time series (as is the case of the RR time 
series in the analysis of heart rate variability) with a low 
number of samples.  

The motivation and properties of ApEn are described 
from time series obtained with mathematical models (so 
with time series whose resolution and signal-to-noise 
ratio can be considered for practical purposes as 
infinite). However, the ApEn is routinely applied to 
actual time series without taking into account practical 
limitations as the noise or the resolution. These 
restrictions can create both bias and uncertainty in the 
estimation of the ApEn 

In the case of heart rate variability studies, the 
resolution of the RR time series is an unavoidable 
limitation that can be modelled as additive noise. The 
standard deviation of the noise in each RR sample 
associated with the finite resolution can be computed as: 
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where fs is the sampling frequency of the ECG from 
where the RR time series has been obtained. This noise 
arises from the difference of two white processes with 
uniform distribution so the noise associated with the 
finite resolution cannot be considered white. Merri et al 
characterises more in depth this noise in [2]. 

Since this limitation is always present in heart rate 
variability studies and the sampling frequency of the 
ECG is not always as high as desirable, this work aims 
to evaluate how the resolution of the RR time series 
afects the estimation of ApEn. 
 
Materials and Methods 
 

Equations (1) to (3) define a family of estimators for 
the Approximate Entropy. In this work we will assume 
that the number of samples of the time series is N=300 
and, as suggested by Pincus in [1], that m (the length of 
the vectors) is 2.  

In order to estimate the bias and the uncertainty in 
ApEn some simulations of fractional Brownian noise 
(fBm) have been carried on because the complexity of 
fBm time series changes with the Hurst exponent (H). 
By changing H and the SD of the time series, several 
conclusions can be inferred on the effect of the fs in the 
estimation of ApEn.  



The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005 
EMBEC'05  Prague, Czech Republic 

IFMBE Proc. 2005 11(1)  ISSN: 1727-1983 © 2005 IFMBE  

 A fBm generator provides time series with a nearly 
infinite resolution. In order to add the limitation of the fs 
the same methodology that was exploited in [3] has 
been employed: a simulated RR time series with infinite 
resolution is cumulatively summated in order to obtain 
the R time series (a time series with the time location of 
the QRS complexes taking the convention that the first 
QRS complex is at zero time). Next, a random constant 
(τ) is added to each sample of the R time series (τ is 
uniformly distributed between -1/(2·fs) and 1/(2·fs)). 
Then, the resolution of the R time series is reduced by 
rounding each sample to the nearest multiple of 1/fs. 
Finally, the RR time series with finite resolution is 
obtained by differentiating the rounded R time series. 
By adding different τ to the original R time series, 
several RR time series with finite resolution can be 
obtained from an infinite resolution RR time series. In 
order to estimate the bias and uncertainty in ApEn 
associated to this loss of resolution, the ApEn in the 
original (infinite resolution) must  be calculated (ApEnt) 
as well as those of the finite resolution time series 
(ApEnm).  

The fast algorithm for the estimation of ApEn 
employed in this work is described in [4]. The algorithm 
used to generate fBm time series is described in [5]. 
With both tools, the following simulations have been 
carried on: 

First simulation: This simulation aims to obtain the 
bias and uncertainty on ApEn with k = 0.2. The 
simulated time series have 300 samples and the selected 
sampling frequency is 128 Hz. The simulation has 
generated 100 realizations of fBm time series whose 
ApEnt ranges from 0.05 to 1.18. The output of the 
generator has zero mean and a variance of 1.00 so each 
realization has been converted in 50 pseudo-RR time 
series by adding 1000 ms (mean heart rate of 60 bpm) 
and changing the standard deviation from 1 ms to 200 
ms.  This permits us to study the effect of the standard 
deviation on the bias. For each one of the 50 pseudo-RR 
time series, 100 realizations with finite resolution have 
been obtained by using the procedure previously 
described. Then, for each ApEnt and each simulated SD, 
100 finite resolution time series have been obtained and 
the bias of ApEn for this time series has been estimated 
as: 
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where ApEnm is the estimated ApEn of the finite 
resolution time series. In this formula we stress that the 
bias can depend on the SD of the time series. In a 
similar way, the uncertainty of ApEn is estimated as: 
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As we will see in the results section, the bias is in 

general very much greater than the uncertainty. The 

following simulations have the purpose to observe how 
the bias changes with fs and k. 

Second simulation: As in the previous simulation, 
100 realizations of fBm with 300 samples have been 
employed. For each one, 50 pseudo-RR time series have 
been obtained with SD ranging from 1 ms to 200 ms. 
Because the uncertainty is negligible in front of the bias, 
only one finite realization for each tested fs has been 
obtained with τ = 0. The considered sampling 
frequencies have been 128 Hz, 250 Hz, 500 Hz, 1 kHz 
and 2 kHz.  

Third simulation: This simulation has the purpose to 
observe the effect of the threshold on the bias of the 
ApEn. We have obtained 5000 realizations of pseudo-
RR time series with different SD. From each realization, 
a finite resolution time series has been obtained with a 
sampling frequency of 128 Hz (τ = 0). ApEn has been 
obtained for k changing from 0.10 to 0.30 in 0.05 steps. 

Actual RR time series can not be considered as 
purely fBm. In order to observe if the bias follows a law 
similar to that obtained from simulation, we have 
studied RR time series from the normal sinus rhythm 
RR time interval database that can be downloaded from 
[6]. These time series are derived from 
electrocardiographic recordings sampled at 128 Hz. We 
have analyzed 2342 RR time series without artifacts 
each consisting in 300 samples. For each time series, we 
have calculated ApEnm (k = 0.2). We have obtained 100 
infinite resolution candidate time series by adding 
uniform noise between -1/(2·fs) and 1/(2·fs) to the 
cumulated sum of the RR time series and taking the 
differentiation next. The bias has been obtained in a 
similar way as in (5) although we have interchanged 
ApEnt by ApEnm and the sign of the expression.  
 
Results 
 

Figure 1 shows the bias on ApEn obtained for the 
first simulation. There is not a monotonically behaviour 
of the bias with the increase of the standard deviation. 
Instead, the bias of ApEn oscillates (though the 
amplitude of the oscillation decreases with increasing 
SD) with a certain period that is, approximately, 39 ms 
and, from the other simulations, can be formulated as: 
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where T is the period of the oscillation, k the threshold 
and fs the sampling frequency. The value of the 
maximum and minimum in each cycle depends on the 
value of the approximate entropy (ApEnt). 

The obtained uncertainty is very much lower than 
the bias as shown in figure 2. Mean uncertainty ≤ 
standard deviation are displayed respect to the SD of the 
time series. 

 
 
 
 

 



The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005 
EMBEC'05  Prague, Czech Republic 

IFMBE Proc. 2005 11(1)  ISSN: 1727-1983 © 2005 IFMBE  

  
 

Fig. 1. Sesgo en la entropía aproximada obtenido en la 
primera simulación (fs=128 Hz) 

 
La incertidumbre obtenida resulta ser mucho menor que 
el sesgo. La figura 2 muestra la incertidumbre promedio 
≤ desviación estándar obtenidas a partir de las 
diferentes entropías aproximadas.  
 
 
 
 
 
 
Figure 1: Bias on approximate entropy obtained by the 
first simulation (fs = 128 Hz) 
 

 
Figure 2: Mean and mean ≤ SD of the uncertainties in 
ApEn obtaining in the first simulation (fs = 128 Hz) 
 

The second simulation provides information on what 
is the minimal sampling frequency that must be 
employed in order to keep the bias lower than a certain 
limit. Results show that the higher the sampling 
frequency, the lower the bias is. Nevertheless, the same 
oscillatory effect still holds with a period as defined in 
(7). Moreover, the bias for a certain standard deviation 
can be related with that obtained in the case of fs = 128 
Hz by: 
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As an example: the bias for a time series with 

standard deviation of 30 ms and fs = 500 Hz will be 
approximately equal to that of a time series with equal 
ApEn sampled at 128 Hz and with a standard deviation 
of 117 ms.  

Figure 3 shows the obtained bias for the different 
sampling frequencies. Note that the abscise axis is the 
product of the standard deviation of the time series and 
the sampling frequency. For a constant product of 
sampling frequency and SD, each dot is the bias for a 
certain ApEnt.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: Bias in ApEn obtained by the second 
simulation for different sampling frequencies 

 
The third simulation has the purpose of studying the 

effect of k in the bias of ApEn. Figure 4 shows this bias 
for the considered thresholds. Now, the abscise axis is 
the product of the threshold and the standard deviation 
of the time series because the following approximation 
holds: 

 

2.02.0
·)( 






≈

kSDbSDb k                     (9) 

 
and for any sampling frequency and k: 
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and b(x)0.2,128 Hz can be obtained in figure 1 for several 
ApEnt. 

Finally, figure 5 shows the bias in ApEn obtained for 
actual RR time series compared with the results of the 
first simulation because the normal sinus rhythm RR 
time interval database is sampled at 128 Hz. The 
estimations of the bias are similar to that obtained by 
simulation. The accumulation of circles in the positive 
half of the bias for SD lower than 50 ms is due to the 
fact that the approximate entropy of the time series is 
near 1.0 while the first simulation considered a wider 
range of ApEn (see figure 1). 

  
Discussion 
 

The results show that the sampling frequency causes 
a bias in the approximate entropy and, at a lower degree, 
an uncertainty. The bias depends on the standard 
deviation of the RR time series, on the sampling 
frequency of the ECG, on the threshold and on the ApEn 
by itself. Surprisingly, in certain conditions, the bias can 
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 rise by increasing the SD of the time series. This implies 
that when measuring time series with identical 
complexity different ApEn can be obtained due to a 
slight change in SD. As an example: Let’s suppose a 
time series whose approximate entropy (infinite 
resolution) is 0.92. The estimated ApEn when sampled 
at 128 Hz with k = 0.2 will be 0.96 if SD = 74 ms and 
0.85 if SD = 78 ms. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Bias in ApEn obtained by the third simulation 
for different thresholds (fs = 128 Hz) 
 

 
Figure 5: Bias in ApEn obtained in the normal sinus 
rhythm RR interval database (black circles) compared 
with the bias of the first simulation (coloured lines) 
 

From the previous example, the following question 
arises: what is the minimum standard deviation of a 
time series in order to ensure that the bias in ApEn is 
lower than a certain limit ≤ e? In the case of fs = 128 
Hz, k = 0.2 and e = 0.05, the minimum SD is 160 ms 
(considering all the studied approximate entropies). This 
limit reduces to 20.5 ms when the sampling frequency is 
1 kHz (see expression (10)). Several studies consider a 
sampling frequency of 1 kHz as a sufficiently higher 
value. Nevertheless, if the standard deviation is lower 
than 20.5 ms (a very usual case in pathological subjects 
or in exercise tests) the ApEn should not be reported 
with more than a decimal figure due to its bias.  

The solution to these problems should be the 
correction of the bias. Nevertheless, it is not an 
immediate process because there is not a bijective 
correspondence between the bias and the approximate 
entropy. In the usual practice, we obtain the ApEnm 
because we have knowledge of the finite resolution time 
series. To this value, several values of ApEnt can be 
considered as candidates for the correction of the bias.  

Finally, the effect of the number of samples has not 
been assessed in this work and probably also affects the 
bias. We only have considered a time span of 5 min (if 
the heart rate is close to 60 bpm). 

  
Conclusions 
 

The sampling frequency that it is used to acquire 
electrocardiograms affects the estimation of the 
approximate entropy of RR time series. The major 
effect is a bias that depends on the sampling frequency, 
on the standard deviation of the time series (not 
monotonically), on the threshold and on the 
approximate entropy of the signal. Time series with the 
same complexity but with slightly different standard 
deviation can present values of approximate entropy 
quite different. The error in the approximate entropy 
when using a sampling frequency of 1 kHz and a 
threshold of 0.2 can be higher than 0.05 if the standard 
deviation of the time series is lower than 20.5 ms. 
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