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Abstract: Auditory evoked potentials (AEPs) are 
usually evaluated subjectively, by visual inspection, 
and considerable differences between interpretations 
commonly appear. Objective, automated methods 
are available in the literature, but only some of these 
techniques can provide statistical significance (p-
values) for the presence of a response. In this work, 
we propose a bootstrap technique to provide such p-
values, which can be applied to a wide variety of 
parameters. The bootstrap method is based on 
randomly resampling (with replacement) the 
original data and gives an estimate of the probability 
that the response obtained is due to random 
variation in the data rather than a physiological 
response. The method is illustrated on auditory 
brainstem responses (ABRs) to detecting hearing 
thresholds. Analysis of a set of 72 recordings from 12 
subjects found hearing thresholds tended to be lower 
than those found by visual inspection by 3 
experienced audiologists, and that fewer stimuli may 
be required than in conventional clinical procedures. 
The bootstrap method provides a new, simple and 
yet powerful means of detecting AEPs, which is also 
very flexible and readily adapted to a wide variety of 
signal parameters.  

Introduction 

Auditory evoked potentials (AEPs) measure the 
response of the hearing systems to acoustic stimulation. 
The response is extracted by presenting a series of 
clicks or tone-burst to the ears, while simultaneously 
recording the electroencephalogram (EEG). AEPs are 
often classified by their response time relative to the 
onset of a stimulus, and three main types are defined: (1) 
auditory brainstem response (ABR) is a series of five to 
seven peaks arising from auditory nerve and brainstem 
structures and occurring within 10 ms of the onset of the 
stimulus; (2) middle latency response (MLR) occurs 
with latencies ranging from roughly 12 to 75 ms and is 
generated from the thalamus and auditory cortex; (3) 
slow vertex potential (SVP) occurs beyond 75 ms. AEPs 
have many applications in clinical settings, such as 
hearing screening and threshold prediction, 
intraoperative monitoring and anaesthetic depth 
measurement. The most common conventional method 
used for recovering the AEP signal from the raw ‘EEG’ 

signal recorded in the patient is coherent averaging, in 
which the ensemble of signal segments following the 
stimuli (‘single trials’)is first obtained, and the sample 
mean then calculated [1].  

In clinical applications, an objective automated 
method to detect the AEP is desirable, because the 
traditional approach, which involves visual inspection 
of the waveform by experts who detect the presence or 
absence of a response can lead to great differences 
between audiologists [2]. Many automated AEP 
detection methods are described in the literature.  These 
usually calculate one or more parameters from the AEP 
and then compare these to some ‘threshold value’, 
beyond which a response is deemed to be present. 
However, it is difficult to compare the different 
estimated measures and determine a suitable criterion as 
to when a response is present. An estimate of the 
statistical significance of the observed response is 
desirable, since this p-value is equivalent to the false-
positive rate, i.e. how often a response would be 
detected when in fact there is no response present. In 
this work, we will use a novel approach, based on the 
bootstrap technique, to estimate the statistical 
significance of the response [3]. The bootstrap method 
was introduced by Efron [4] to solve some complex 
statistical problems, replacing possibly intractable 
mathematical analysis by computationally intensive 
resampling methods.  We describe how the bootstrap 
technique can be used to provide a very flexible means 
of assessing the statistical significance of a wide range 
of different parameters for detecting the response. 

During the period of collecting AEP data, sometimes 
muscle activity creates a large-amplitude artefact in the 
recorded signal. In coherent averaging, automated 
artefact rejection schemes are often employed. We 
present a means by which this can also be taken into 
account in estimating the p-values through the bootstrap 
method.  

Finally, in order to reduce the time for AEP 
recording, it is desirable to reduce the number of sweeps 
required for detecting the response. We investigate the 
minimum number of sweeps required at varying 
stimulus intensities, when using the bootstrap statistical 
test. 
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Materials and Methods 

ABR data 
ABRs were recorded from 12 normal-hearing adults 

subjects (6 males and 6 females), who were aged 
between 18 and 30 years. All the recordings were made 
using rectangular click stimuli with duration of 0.1ms. 
At each stimulus level, two recordings were collected 
for every subject, starting at 50 dB sensation level (SL), 
decreasing in 10 dB steps to 0 dB SL. The click rate was 
33.3 Hz. The number of sweeps contributing to each 
coherent averaged response was 2000. The raw data 
were band-pass filtered between 30 and 2100 Hz, and 
sampled at 5 kHz. The ABR was then obtained by 
coherently averaging the ensemble of data segments 
following the onset of each stimulus. The raw recorded 
signal, containing spontaneous background cerebral 
activity, and noise as well as the ABR, will be referred 
to as the ‘EEG’. 

Bootstrap test  
In order to test for the presence of a response, we 

first estimate a parameter from the coherently averaged 
data (ABR), and then test its statistical significance, 
using the bootstrap method. The following four 
parameters were used in this work: diff [5], the 
difference between the maximum and minimum value 
of the AEP in the range 5-15 ms; power, the mean 
power of the AEP; Fsp [6], an estimate of the signal-to-
noise ratio of the AEP at 10 ms; ±difference [7], an 
alternative estimate of the signal-to-noise ratio.  
Following the conventional procedure for coherent 
averaging, the EEG signal is first broken into segments 
beginning at the instant of each stimulus. The resulting 
ensemble of signal segments (with a length 
corresponding to the time-interval between stimuli) is 
then averaged to obtain the evoked response. In the 
bootstrap method, a similar ensemble is built up, but 
segments are chosen from random locations within the 
EEG signal. By averaging the signals in this ensemble, 
the ‘incoherent’ average is found. From this 
‘incoherent’ average the parameters (see above) are 
again calculated (to be denoted by *). This process is 
repeated 499 times, providing the ‘bootstrap 
distribution’ of each of the parameters. This gives an 
estimate of the sampling distribution of the parameter, 
under the null-hypothesis of ‘no response to the stimuli’ 
– as illustrated by the cumulative distribution shown in 
Fig. 1 for one parameter (diff) and one subject at 
different stimulus intensities. The bootstrap distributions 
at each stimulus intensity are shown by curves and the 
symbols x give the corresponding values for the 
parameter from the coherent average. From this the 
statistical significance (p-value) of the parameter 
estimated can be found: the proportion of bootstrap 
values (diff*) that are larger than diff gives the p-value 
for that parameter. If p ≤ 5% (horizontal line in Fig. 1), 
we consider there to be a significant response present. In 
Fig. 1, there is a significant response for 20, 30, 40 and 
50 dB, but not for 0 dB (p≈85%) or 10 dB (p≈65%).   
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Figure 1: The distribution of diff* (solid lines), for stimulus 
intensities between 0 and 50 dB (sensation level - SL) for one 
subject. The symbols x show the corresponding diff for the 
coherent average.  

Simulated data 
In order to test the proposed bootstrap test, we 

carried out a Monte-Carlo study, simulating signals 
without stimulus responses. The aim of this was to 
estimate whether the pre-defined false positive rate was 
actually obtained, when no response was present 
(coverage error). We used an autoregressive model (AR) 
to simulate EEG signals. First we select one EEG signal, 
whose spectrum may be considered to be most ‘typical’ 
for the set of recordings. This was defined as the ones 
whose spectrum was closest to the median spectrum of 
the 12 recordings at 0 dB SL. We chose the model order 
of 16 according to the Final Prediction Error (FPE) (Fig. 
2.) to simulate 500 ‘EEG signals’ without a stimulus 
response. 
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Figure 2: The relationship between order and Final Prediction 
Error (FPE) using a recording with stimulation at 0 dB SL.  

Muscle artefact rejection 
The traditional way to remove muscle activity is by 

setting a maximum amplitude level, and any stimulus-
response that exceeds this limit is not included in the 
coherent average. Based on observations of our 
recording and common practice in this field [8], we 
chose to exclude data whose amplitudes are outside the 
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range ±20 µV. This procedure was applied in both the 
coherent and incoherent (bootstrap) averaging.  

Minimal number of sweeps required for detecting a 
response 

In order to find the minimum number of sweeps 
required for detecting a response, we applied the 
bootstrap method with increasing numbers of sweeps 
(100, 200, …, 2000), using non-overlapping segments 
of the original recordings. We then determined, for each 
stimulus intensity, the percentage of segments (from all 
subjects), in which a statistically significant AEP-
response is found, for each of the four parameters. The 
above artefact rejection scheme was not used at this 
stage.  

Results 

Simulated data  
The percentages of false positive tests (out of 500) 

for each of the four parameters are shown in Table 1, 
with and without using the muscle artefact rejection 
scheme described above. As expected, these values 
were all close to 5%α = , and within the acceptable 
range of 3.2%-6.8%, given by the binomial distribution 
for 500 trials with probability of ‘success’ equal to 5% 
(95% confidence limits). Note that the four parameters 
were all calculated from the same set of simulated 
signals.  
Table 1: The percentages of false positives with and without 
muscle artefact rejection in 500 simulated signals, using the 
bootstrap test with α=5%. 

Parameter diff power Fsp ± 

With muscle rejection 4.0% 3.6% 3.4% 4.2% 

Without muscle rejection  4.2% 3.6% 3.4% 3.8% 
 
ABR recorded data 

Subjective inspections: Three experienced 
audiologists (A, B, and C) visually inspected the 
responses by comparing two replicates of coherent 
averages at each stimulus intensity, in order to 
subjectively determine the hearing thresholds.  

The hearing threshold was also estimated by 
bootstrap approach ( 5%α = ). The minimum stimulus 
intensity, at which a significant response is found (and 
for which p < 5% also at all higher stimulus intensities), 
is considered to be the hearing threshold.  

In order to compare the difference of hearing 
threshold between subjective inspections and objective 
bootstrap approach based on the four parameters, we 
calculated the average hearing threshold (AHT) (Table 
2) of 12 subjects. The parameter power appears to be 
the most sensitive in detecting a response.  
Table 2: Average hearing threshold by subjective inspection 
and objective bootstrap technique. 

Subjective Objective dB 
SL A B C diff power Fsp ± 
AHT 20* 25* 15 13.8 10.8 15.8 17.3* 

* Significantly different to the threshold found with parameter 
power (sign-test, p < 0.05). 

The median value of the three (A, B, C) subjectively 
evaluated hearing thresholds (MHT) of each of the 12 
subjects were calculated and compared to the hearing 
thresholds for each of the four parameters (HT) obtained 
by the bootstrap method (p<5%). Results are shown in 
Fig. 3. For power and diff, these are lower or equal to  
MHT in 11 of the 12 subjects; for Fsp and ± difference, 
this is the case in 10 subjects. 
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Figure 3: Comparison between median hearing threshold 
(MHT - median of A, B and C, solid line), and hearing 
thresholds from the four parameters (the histograms from left 
to right correspond to the parameters diff, power, Fsp, ± 
difference). In most cases, the latter are smaller than, or equal 
to the corresponding MHT.  

Fig. 4 shows the hearing thresholds obtained with 
1%α = rather than 5%α = used in the previous results. 

For 12 subjects, the hearing threshold remains the same 
in most cases, and increases by 10 or 20 dB in three 
cases for diff, two cases for power, one case for Fsp, and 
four cases for ± difference. 
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Figure 4: Comparison the hearing threshold for diff with 
5%α =  and 1%α = .  

The artefact rejection scheme aims to eliminate poor 
data segments, and thus improve the ability to detect the 
ABR. Table 3 shows the fraction of the 72 recordings in 
which a response was detected with, and without the 
artefact rejection scheme. Overall, the number of cases 
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in which a response was detected however did not 
change greatly. The p-values obtained from the 
bootstrap test tended to be smaller without the artefact 
rejection scheme than with it (the difference was 
statistically significant for diff, Fsp and ± difference; 
sign-test, p < 0.05).  
Table 3: Dectection percentages (p < 0.05) with and without 
muscle artefact rejection.  

Parameter diff power Fsp ± 

With muscle artefact 
rejection  

75.0% 81.9% 76.4% 68.1% 

Without muscle 
artefact rejection 

79.2% 83.3% 76.4% 68.1% 

 
In accordance with the methods described above, we 

then applied the bootstrap tests to progressively 
increasing numbers of stimuli. The aim is to determine 
the minimum number of stimuli required in order to 
detect the ABR. Fig. 5 illustrates the results for the 
parameter diff and Fsp. As expected, the fraction of cases 
in which the ABR is detected increases with increasing 
stimulus intensity and also with the number of sweeps. 
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Figure 5: The detection percentages correspond to different 
number of stimuli (sweeps) at various stimulus intensities (0 
dB to 50 dB in steps of 10 dB SL) for parameters diff (A) and 
Fsp (B).  

At 40 and 50 dB SL, 800 stimuli were enough to detect 
the response in all of the 12 subjects with the parameter 
power; 1100 stimuli were required for diff and Fsp.  

Discussion and Conclusion 

The commonly used way to interpret the auditory 
evoked potentials is visual inspection, which greatly 
depends on the experience of the practitioners and can 
lead to large disagreement between different observers 
[9]. A number of methods [10-15] have been proposed 
in the literature to objectively detect the presence of a 
response, but they do not all rely on statistical criteria, 
nor could conventional statistical tests be readily 
applied in detecting a response. The bootstrap method 
proposed here provides a simple and flexible means for 
statistically detecting the presence of a response using a 
wide range of parameters extracted from the signal. 

The only parameter to be chosen with the bootstrap 
method is the significance level ( α ). Clearly, the 
choice of this parameter can affect the detected hearing 
threshold, as illustrated in Fig. 4: lower values of α may 
lead to higher thresholds. The choice of a suitable 
α depends on the aim to the specific applications. For 
instance, in screening tests for hearing loss, a false 
positive response may lead to missing a hearing 
impairment, and a low false-positive rate is therefore 
desirable. As emphasized in [16] , even with α =0.1% 
in screening tests one out of 1000 newborns with 
hearing impairment would be missed, with potentially 
dramatic consequences for the baby. However, in 
monitoring the depth of anaesthesia using middle 
latency responses (MLR), the presence of a response 
may indicate that the patient is ‘waking up’, and missing 
this response (a false negative) may have serious 
consequences.  

The proposed artefact rejection scheme did not 
provide the expected improvement in detecting the 
hearing threshold; in fact, p-values increased, reducing 
out ability to detect the response. Visual inspection of 
the signals indicated that there were not, in fact, large 
artefacts present in the data, and this may explain why 
the benefit of the artefact rejection scheme was not 
evident here. It may also be that the threshold of ± 20 
µV selected was not the most appropriate for this data. 
Too large rejection level will lead to poor data being 
included in the analysis. On the other hand, the major 
disadvantage of using low rejection levels is that this 
may greatly increase the time required to acquire 
acceptable quality recordings. Artefact rejection 
schemes such as the one we used are routinely used in 
clinical work, and the approach we presented allows this 
to be taken into account in calculating the bootstrap p-
values. The proposed artefact rejection schemes lead to 
small increases of the p-values, and consequently a 
small decrease in the fraction of recordings in which the 
response was detected. This could suggest that the 
artefact rejection scheme has lead to decreased 
sensitivity in this data. An alternative explanation is that 
by eliminating muscle artefact we have reduced the 
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number of false-positives, i.e. some of the artefact (at 
low stimulus intensities) may have been falsely 
interpreted as an evoked response when not using the 
artefact rejection scheme.  

The bootstrap technique can deal with varying 
numbers of stimuli, while maintaining the pre-defined 
false-positive rate.  In Figure 5, it is evident that at 40 
and 50 dB SL, approximately 1000 stimuli were enough 
to detect the response, which is rather less than the 2000 
usually recommended in the literature. Thus in normal 
hearing subjects, at these levels of stimulus the duration 
of the test could be considerably reduced [17]. Clearly it 
would be ideal to have a procedure that allows the test 
to terminate as soon as the response has been detected, 
without needing to continue to the pre-defined number 
of stimuli (e.g. 2000). This would require ‘sequential 
statistical tests’, which is not a simple matter, as pointed 
out in a recent investigation [18].  

The bootstrap method clearly provides a very simple 
and flexible means of testing for the statistical 
significance of stimulus responses in auditory evoked 
potentials. While we have shown its use in ABRs, it 
could readily be adopted to other stimulus modalities, 
and other parameters that may be tuned to the specific 
features of those signals.  
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