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Abstract: Independent Component Analysis (ICA) 
and Blind Source Separation (BSS) are increasing in 
popularity in the field of biomedical signal 
processing. These are generally used to separate 
digital recordings of multi-channel biosignals into 
their constituent components. The wider use of 
ICA/BSS in the field of biomedical signal processing 
has been facilitated through a number freely 
available toolboxes that implement popular flavours 
of ICA/BSS, such as the FastICA algorithm. 
However, the application of these techniques in a 
blind fashion could lead to many erroneous 
conclusions drawn from data-sets for which 
‘standard’ ICA/BSS techniques are not immediately 
applicable. In this work we set out to summarise 
some of the different techniques of ICA/BSS in the 
literature, in view of the possible issues that may 
arise when these are applied blindly to biomedical 
signal measurements. 
 
Introduction 
 

The ultimate aim in processing electromagnetic 
(EM) biosignals is that of extracting information 
underlying those measurements made over time. Such a 
set of multi-channel measurements are usually recorded 
using a known spatial distribution of the recording 
sensors with respect to the human body (such as across 
the scalp, chest, limbs, etc.), giving rise to a set of 
temporally and spatially correlated measurements. 
Signal(s) of interest are seldom recorded in isolation and 
are generally mixed with other ongoing ‘background’ 
activity and sensor noise, and are almost certainly 
contaminated by artifacts of either physiological or 
environmental origins; furthermore, the signal-to-noise 
(SNR) ratio of the desired signal is generally quite poor. 
When viewing measured biomedical signals, a clinician, 
through training and experience generally looks for 
distinct patterns of activity with particular spatial 
distributions – exactly what the clinician is looking for 
depends on the application domain. One viewpoint is 
that the recorded data contains measurements of a finite 
set of separate, overlapping (in both space and time) 
activities which can be both physiological and/or 
artifactual in nature. A clinician would then attempt to 
‘unmix’ these sources visually using human reasoning, 
in order to be able to arrive at a diagnosis or prognosis. 
It would be of great benefit to clinicians if it were 
possible to automate the analysis of biomedical signals 
to do the following: 

 
1. unmix and isolate sets of EM biosignal 

measurements into their constituent components 
or sources; 

2. provide information as to the number of distinct 
sources underlying the measurements; 

3. provide the spatial distribution of each source 
along with the time-series of the source itself; 

4. track changes in the number, spatial distribution 
and morphology of the sources over time. 

  
Within this context, the technique of Independent 
Component Analysis (ICA) – as a subset of the 
technique of Blind Source Separation (BSS) – provides 
a tool for giving a solution to the requirements listed 
above. ICA essentially extracts a set of underlying 
sources or components from a set of random variables, 
measurements or signals. The technique typically uses a 
large set of observed multivariate data to define a 
generative model for the observed data. The 
components are assumed to be mixed, either linearly or 
nonlinearly, and the components themselves – along 
with the mixing system – are assumed to be unknown. 

For ICA the fundamental assumption is that the 
sources are mutually independent. ICA de-mixes or 
extracts these sources by exploiting this independence 
of the sources underlying the measured data and is a 
more powerful technique than classical methods such as 
Principal Component Analysis (PCA). 

 
 

Independent Component Analysis 
 

The basic BSS problem that ICA attempts to solve 
assumes a set of m measured data points at time instant 
t, x(t) = [x1(t), x2(t), …, xm(t)]T to be a combination of n 
unknown underlying sources s(t) = [s1(t), s2(t), …, 
sn(t)]T. The mixing of the sources is generally assumed 
to be linear, and the mixing matrix describing the linear 
combination of the s(t) is given by the full rank m×n 
matrix A such that 
 

( ) ( )tt Asx = ,    (1) 
 

it is also generally assumed that the number of 
underlying sources is less than or equal to the number of 
measurement channels ( mn ≤ ). 
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 The task of the ICA algorithms is to recover the 
original sources ( )ts  from just the observations ( )tx  
and this generally translates to that of finding a 
separating or de-mixing matrix W such that 
 

( ) ( )tt Wxs =ˆ ,    (2) 
 
given the set of observed values in ( )tx  and where 
( )tŝ are the resulting estimate of the underlying sources.  

 
 
The Basic Assumptions: In reality the basic mixing 
model assumed in eqn (1) is simplistic and used for ease 
of implementation. The more general mixing model, 
which makes no assumptions on the linearity of the 
mixing and allows additive noise, may be a more 
realistic model for a system in general, so 
  

x(t) = f{s(t)} + n(t)   (3) 
 
where f can be any unknown function and n(t) is 
additive sensor noise corrupting the measurements x(t) 
(generally i.i.d. spatially and temporally white noise). 

In (3), the BSS problem is now that of obtaining a 
demixing matrix by inverting f whilst having no 
information on the properties of either s or n (or f); it 
can be appreciated that without making any assumptions 
about the nature of the data, noise or mixing process, the 
BSS problem will remain intractable. This is why basic 
assumptions are made when formulating ICA 
algorithms in order to make the problem more tractable.  
Within a biomedical signal analysis context, most of 
these basic assumptions still make the technique 
attractive and viable. 

The following are some of the more common 
assumptions made when applying ICA algorithms: 
 
 
i. Linear mixing: this reduces eqn (3) to 
  

x(t) = As(t) + n(t)   (4) 
 
where A is the linear mixing matrix. In a biomedical 
signals context, linear mixing assumes mixing of the 
sources using simple linear superposition of the 
attenuated sources at the measurement channel – for the 
most part a reasonable assumption to make. For the 
most part assuming instantaneous mixing is perfectly 
legitimate as this assumes that transmission through the 
mixing medium is instantaneous – this holds for such 
applications as fMRI and EM brain signals. Quantities 
such as sound signals measured through microphones 
then do become an issue, however, as this assumes 
convolutive mixing. 
 
 
ii. Noiseless mixing: The majority of the traditional 
ICA models assume that the observations x(t) are 
noiseless (or that the noise term ( )tn is negligible), i.e. 
eqn (4) reduces to eqn (1). Whilst this is probably less 

realistic in practical terms, it allows ICA algorithms to 
separate sources of interest even if the separate sources 
themselves remain contaminated by the measurement 
noise. 
 
 
iii. Square mixing: So far it has been assumed that the 
mixing matrix A may be non-square (m×n), and in the 
case of physiologic signal analysis it is likely that the 
number of underlying sources n is less than the number 
of measurement channels m in use. However most 
classic ICA algorithms assume a square mixing matrix, 
i.e. m=n, this makes the BSS problem more tractable. 
Within a biomedical signal analysis perspective the 
square-mixing assumption is sometimes less than 
desirable, particularly is situations where high density 
measurements are made over relatively short periods of 
time such as in most magnetoencephalogram (MEG) 
and functional magnetic resonance imaging (fMRI) 
recordings. The probability of there being as many 
sources as measurement channels in these situations is 
less likely. For this reason most researchers apply data-
reduction techniques to the data prior to ICA [1] 
although this may be ill-advised in certain situations.  
 
 
iv. Stationary mixing: It is assumed that the statistics of 
the mixing matrix A do not change with time – i.e. the 
assumption of stationarity of the mixing matrix. In 
biomedical signal analysis terms this means that the 
physics of the mixing of the sources as measured by the 
sensors is not changing – this may not be the case in 
situations where, for example, electrocardiogram (ECG) 
is recorded on chest electrodes and the electrodes move 
over time due to breathing, etc.. However, in EM brain 
signal recordings the assumption of a stationary mixing 
matrix can be interpreted as the fixed biophysical 
structure of the brain itself whilst the sources distributed 
within this structure change their intensity over time, 
which is perfectly plausible. 
  
 
v. Statistical Independence of the sources: The most 
important assumption made in applying ICA is that the 
sources are mutually independent. Statistical 
independence is a stronger assumption than 
uncorrelatedness, and while statistically independent 
sources are necessarily uncorrelated, the converse does 
not follow. This means, for example, that independent 
variables are uncorrelated and have no higher order 
correlations. In the case of time-series data it is assumed 
that each source is generated by a random process 
which is independent of the random processes 
generating other sources. Thus, the BSS problem can be 
made further tractable by allowing the introduction of a 
set of algorithms that can take advantage of this 
independence of the sources. The assumption of 
independence of the sources can be quite obvious in 
some situations as, for example, when used in artifact 
rejection separating brain signals from, say, 50Hz line 
noise or ocular artifact [2]; or when separating fetal 
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 electrocardiogram (FECG) from maternal ECG 
(MECG) through trans-abdominal recordings [3]. 
 

The utility of ICA in light of the above assumptions, 
when placed in a physiologic analysis setting, should be 
assessed on an individual biomedical signals application 
basis. However, for the most part, ICA can still be a 
very useful technique even with these simplifying 
assumptions being made.  

  
 

A. ICA through Higher Order Statistics 
 
Some of the most commonly cited ICA algorithms 

perform BSS of statistically independent sources based 
on techniques involving higher-order statistics (HOS). 
Several such implementations can be found in the 
literature; [4,5,6,7,8]. For these methods the 
measurements ( )tx  of eqn (1) are assumed to be 
observations of random variables, where temporal 
ordering is irrelevant and which are generated as a 
linear mixture of statistically independent sources. 

When seeking statistical independence in sources, it 
is not enough to obtain uncorrelatedness between the 
sources, which is what PCA does – although 
decorrelating the measured data is generally a useful 
first step – statistical independence is based on HOS. It 
turns out that it is possible to obtain an estimate ( )tŝ  of 
the sources ( )ts iff the sources ( )ts  are non-Guassian. In 
practice it is enough to try and make the estimates ( )tŝ  
as non-Gaussian as possible as, according to the central 
limit theorem, sums of non-Gaussian random variables 
are closer to Gaussian than the originals. In this way 
looking for independent sources is equivalent to looking 
for non-Gaussian sources. As a consequence, this 
highlights a potential limitation of the method when 
used for biomedical signal processing, as ICA using this 
technique can only resolve independent sources which 
have non-Gaussian distributions (or at most only one 
source having a Gaussian distribution). 

Three of the most popular and widely referenced 
techniques for implementing ICA using a HOS 
approach are: 

(a) Non-Gaussianity through Kurtosis – FastICA: 
FastICA is one of the more referenced ICA techniques 
in the literature [7] and it is distributed as a freely 
downloadable set of Matlab® functions from the 
internet [9]. This algorithm attempts to separate 
underlying sources from the given measurement set 
based on their ‘non-Gaussianity’. The simple premise 
behind FastICA is that the fast fixed-point iterative 
algorithm undertakes to find projections that maximize 
the non-Gaussianity of components by their Kurtosis 
(the 4th order cumulant given to a random variable). 

(b) Non-Gaussianity through Negentropy –  
Infomax: Another algorithm that implements ICA 
through attempting to discover non-Gaussianity of the 
sources is the Bell-Sejnowski algorithm [6,10], where 
non-Gaussianity is measured using negentropy, which is 

based on the information-theoretic quantity of 
differential entropy. For random variables with equal 
variance but different distributions, Gaussian random 
variables have the largest entropy, i.e. contain the least 
information. Thus, negentropy (or differential entropy) 
is defined as the difference between the entropy of a 
Gaussian random variable with the same variance as the 
observed random variable, and the entropy of the 
observed variable. Negentropy is zero when the 
observed random variable is also Gaussian, and positive 
when the observed variable is non-Gaussian. 

(c) Joint Approximate Diagonalisation of 
Eigenmatrices – JADE: This approach is known as ICA 
by tensorial methods using higher-order cumulant 
tensors [11]. The covariance matrix is the second-order 
cumulant tensor, and the fourth-order tensor is defined 
by the fourth order cumulants. By performing an 
eigenvalue decomposition of the covariance matrix of 
the data, xC , the data are transformed such that the 
second-order correlations are zero. Similarly, as a 
generalisation of this principle, fourth-order cumulant 
tensors can be used to make the fourth-order cumulants 
zero or as close to zero as possible.  As with HOS 
methods described previously, reducing the fourth-order 
cumulants to zero in this way implies statistical 
independence of the sources and JADE is the algorithm 
that implements this. As the name implies, JADE 
involves the joint diagonalisation of a number of 
matrices (i.e. attempts to make all off diagonals zero or 
close to zero as possible) [12,13]. 

 
 

B. ICA through Time Structure Analysis 
 
A completely different approach to ICA is given by 

considering the time structure of the sources. The 
assumption of independence of the sources has a very 
important and useful consequence: the source 
waveforms have no spatial temporal or spatial time-
frequency correlations. The basic approach here is to 
capture the dependency structure of the observed signals 
using a set of square matrices (in the form of a stack of 
matrices), and then find the de-mixing matrix which is 
the joint diagonaliser of the stack, i.e. 

 
TAACC sx

kk = ,    (6) 
 

where k
xC  is the k-th covariance matrix of the data x(t), 

k
sC the corresponding covariance matrix of the sources 

s(t), and A is the mixing matrix. Conversely, the source 
covariances are obtained from the data covariance 
through the inversion 

 
TWWCC xs

kk = ,    (7) 
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where W is the unmixing matrix. These two equations 
hold in general, regardless of the nature of the matrices 
in the stack.  The relationship between the two 
covariance matrix stacks of k

xC  and k
sC are shown 

pictorially in Figure 1, where the mixing matrix A links 
the covariance stack of the sources to the covariance 
stack of the measurements and vice-versa with the 
unmixing matrix W. 

The index k is an index into the matrix stack and will 
have different interpretations depending on what 
quantities are being measured. For example, when the 
temporal dependancy is captured through temporal 
corellation measured at different lags, k is an index into 
the cross-covariances at each lag, starting from k=0,1,2, 
etc. … until a maximum number of lags is reached. So, 
for a maximum of L lags, there will be L+1 matrices in 
the stack (k=0,1,2,…, L). 

There are two ways of estimating the mixing matrix 
A with reference to a stack of correlation matrices. The 
most common approach is to estimate the de-mixing 
matrix W first – this is known as an inverse estimation 
method. Since Cs is supposed to be diagonal, we can 
optimise the coefficients of W in such a way as to make 
the matrix given by TWWCx

k as diagonal as possible. 
The diagonality of a matrix can be measured, for 
example, by the sum of the squared off-diagonal 
elements. Previous methods employed orthogonal 
constraints [12,13,14], however more advanced methods 
allow non-orthogonal diagonalisation [15] but require a 
square mixing matrix. Conversely, forward estimation 
methods (e.g. [16]) have the advantage that they allow 
non-orthogonal and non-square mixing. However, these 
methods are not quite as efficient as some of the inverse 
methods, and still require some estimate of the number 
of sources. 

 
 

ICA applied to Neurophysiology 
 

The rationale behind this paper is that of illustrating 
the variety of specialisations that ICA allows, hopefully 
highlighting the many more potential uses of ICA in 
biomedicine than is currently presented in the literature. 
For the most part the use of ICA as a ‘black-box’ 
method may result in situations, such as the violation of 
some assumption, which implies that ICA is inferior 
where, in fact, it could have been better had it been used 
appropriately. 

In our implementations of ICA for EM brain signal 
analysis we make assumptions that are in keeping with 
the general assumptions governing the application of 
ICA.  In particular we assume that: 
 

1. The measured neurophysiological signals are a 
linear summation of the electrical/magnetic 
activity from various brain regions. 

2. The EM field distribution is spatially fixed and 
only the electrical ‘strength’ is changing within 
these regions. 

3. Any activity of interest is independent of the 
ongoing background EM brain activity. This 
certainly holds true for most artifacts and to 
activity such as epileptic seizure activity (at least 
early on in the evolution of a seizure). 

 
Whilst ICA is not necessarily suited for use in all 

problems in this domain, one of the biggest reasons for 
using ICA in EM brain signal analysis is the fact that 
multi-source activity can be naturally separated into 
neurophysiologically meaningful components. Standard 
signal processing techniques such as matched and/or 
adaptive filters can be used to detect and extract activity 
of interest, but these generally require much more 
detailed a priori knowledge about the characteristics of 

 

     {Cx
k} k k

      

{Cs
k}

{Cs
k} = W{Cx

k}WT

{Cx
k} = A{Cs

k}AT 
 

 
Figure 1: The relationship between the two covariance matrix stacks of k

xC  and k
sC  in time structure based ICA. The 

mixing matrix A can be seen to link the covariance stack of the sources to the covariance stack of the measurements and 
vice-versa with the unmixing matrix W. 
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 each of the signals in question. Furthermore, such 
techniques are never as discriminative as ICA can be, 
because there are usually residuals in performing 
unmixing in this way. ICA also unmixes signals by 
making very basic assumptions about the data (that of 
independence being foremost) and it makes little 
difference if the signals are artifactual in origin or brain-
signals, for example, for the technique to work – 
standard techniques are usually not as flexible. Further 
information on our specific applications of ICA to EM 
brain signal analysis can be found in [17]. 

 
 

Conclusions 
 

This paper describes the technique of ICA as a 
method for performing BSS in the context of biomedical 
signal processing. The generic technique of ICA is 
introduced along with the fundamental assumptions that 
are generally made in order to make the problem more 
tractable. In essence, ICA techniques make assumptions 
based on the mixing of the independent sources and 
based on the statistical independence of those same 
sources. The mixing assumptions such as those of 
linearity, stationarity and square mixing are made in 
order to allow specific embodiments of ICA to be easily 
formulated and may be relaxed at will – depending on 
the algorithm in use. The same holds, for example, for 
the assumption of noiseless mixing. It has been shown 
that although these assumptions might make ICA seem 
restrictive in its potential applications, it has found 
many applications in the biomedical signal processing 
field as shown in the literature. 

Of the many possible algorithms devised towards 
solving the BSS problem, ICA is popularly solved 
through the use of HOS techniques – basically through 
separating statistically independent sources based on 
their non-Gaussianity. We show that another, more 
appealing (with biomedical signal analysis in mind) 
viewpoint is that of using spatio-temporal and spatial-
time frequency based ICA techniques. The main 
difference between the two being that in the latter 
technique the information inherent in the time-sequence 
of the measured data points is made use of – whereas in 
the former it is not. It can be seen that in the biomedical 
signal processing field where the analysis of 
information is generally based on the frequency content 
of recordings and on waveform morphology, such ICA 
techniques prove invaluable. 
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