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Abstract: The article describes method, process and 
results of single-trial EEG signal classification using 
Hidden Markov Models (HMM). EEG 
accompanying fast extension and flexion movement 
of right index finger is classified.  The aim of our 
study is to verify classification possibilities of the 
very closely localized and similar movements. The 
used classification system is able to distinguish 
between movements. A relationship between statistic 
processing, results of classification and characteristic 
of EEG (ERS, ERD) is given.  
 
 
Introduction 
 

Our previous work [1] was concerned with the 
single-trial classification of right shoulder and right 
index finger movements from the EEG signal. The 
classification of right index finger fast extension and 
flexion (E/F) movements is more complicated, because 
both movements are accompanied with activation of 
near parts of  cerebral cortex. Moreover, movements are 
performed on the same side of the body thus it is not 
possible to use EEG power difference between left and 
right senzorimotor area (SMA), which can help with 
common problem of left/right hand movements 
classification [2]. The application field of our research 
results is to improve the movement classification 
resolution of the existing systems in the BCI domain. 
 
EEG Database 

 
The data we used for our experiments were 

originally recorded for EEG analysis presented in [3], 
where a detailed description of the database can be 
found. Eleven subjects took part in the experiment, each 
of them performed ≈120 E/F movements with right 
index finger – see Table 1. Spacing between movements 
was 10-12s, persons had have closed eyes during the 
experiment. 

EEG was recorded using 21 closely spaced silver 
electrodes; installation is shown in Figure 1. EEG was 
filtered using Laplacian operator. Only the electrodes 
with all neighbors were used for classification  – see  

 
 
 
 
 

 
Figure 1.  Laplacian filter was able to give accurate 
radial current density estimation only at these 
electrodes. The electrodes 5 and 10 of person 9 was 
removed from our experiments because they shown too 
much noise in the preliminary analysis.  
 

 

 

Figure 1: Placement of electrodes in experiment [3] on 
scalp of experimental person. The electrodes are placed 
over left senzomotoric cortex – contralateral to 
performed movements. Only shaded electrodes were 
used for classification. 

 
Table 1: Number of realizations of EEG movements. 
 

Person 
No. 1 2 3 4 5 6 7 8 9 10 11 

No. of 
extension  
realization 

 
73 

 
52 

 
41 

 
72 

 
99 

 
62 

 
74 

 
87 

 
44 

 
64 

 
84 

No. of 
flexion  

realization 
81 54 77 38 81 66 82 63 41 74 52 

 
Changes in EEG accompanying movements 
 

It is necessary to explain basic characteristics of 
movement EEG before the presentation of classification 
system function. We can see a few phenomena 
correlated with movement in EEG – event related 
potentials (ERP, time domain) and event-related 
desynchronization and synchronization (ERD, ERS, 
spectral domain). Our interest is focused to ERD and 
ERS. 
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 ERD [3], [4], [9] precedes performed movement, it 
displays as a fall of power mainly in 8-13Hz band (µ 
band) in time  interval  <-1,5s; 0,5s> related to the time 
of movement. Desynchronization occurs even if the 
movement is not performed, it is sufficient to think 
about the movement. Desynchronization parameters are 
dependent on the character of movement. They depend 
for example on the speed of movement and the force 
that the movement exceeds.  For processed movement 
µERD occurs always on the same frequencies, it differs 
between movement by power of inhibition and time 
span. According to [3] the flexion ERD is stronger in 8 
persons, 1 person has same intensity for both extension 
and flexion ERD and 2 people have stronger extension 
ERD. 

ERS [5] conversely comes after movement, 
displaying as a return of power to original value before 
the desynchronization. Moreover it displays as a rise of 
power mainly in 10-30Hz band (β and rarely a γ band) 1 
to 3 seconds after the performed movement. ERS also 
carries information about the performed movement. The 
work [5] presents statistically important difference in 
βERS of extension and flexion movements. The ERS of 
extension movement was founded to be contralaterally 
stronger than ERS of flexion movement 

Our aim is to show if and how can be both events 
used for classification of performed movement. 

 
Parameterization and Classification 

 
FFT parameterization was selected as follows 
the first experiments [1]. The vector of 
parameters consisted of 35 samples – spectral 
lines amplitudes (5-40 Hz, time resolution 
200ms, spectral resolution 1Hz, fsample=256 
Hz). Frequency band 1-35Hz was used for 
classification   originally; better classification score was 
archived but according to used method of data recording 
the classification was influenced by long-term changes 
in EEG and low-frequency artifacts. In opposite to that 
the classification in 5-40Hz band works more with β/µ 
band. That is why we used frequency band 5-40Hz 
finally. 

The classification system [6] used in our study is the 
same, which was used in our work [1]. Due to a small 
number of EEG movement realizations (signal is hard to 
obtain) the data were 16 times randomly divided into 
two disjunctive sets for training and testing in 1:1 ratio, 
then classified and results were statistically processed 
(mean and std. deviation computed).  This approach 
suppressed influence of selection concrete training and 
testing sets on the classification score. 

Classifying HMM models had left-to-right, no skips 
architecture [8] with 4 emitting states corresponding to 
four significant phases of movement-related EEG 
(silence, desynchronization, synchronization, silence [1] 
– see Figure 2). Every model state used 35 spectral lines 
– 35 vectors of mean and variance. 

A separate model was used for every person and 
type of movement. In contrast to speech recognition it is 

not possible to generalize the trained model to more 
than one person. EEG represents brain activity of 
experimental person and so it is in some way individual. 
Model trained for one person is not able to classify EEG 
of another experimental person satisfyingly. 

 

 

Figure 2: Architecture of used model and 
correspondence with EEG. On top we can see the time 
progress of the EEG movement realization; on bottom 
HMM modelling the EEG realization spectrum. 

Reasons for using the HMM architecture: 
 
• Physiological compatibility: The selected 4-state 

architecture matches the physiological process, it is 
even possible to segment the EEG with the help of 
the Hidden Markov model classifier. 

• Ease of the interpretation: It is quite simple to 
interpret the contents of the trained model. This is a 
big advantage compared to e.g. some kinds of 
neural networks, where the implementation of the 
trained system is not so straightforward. That can 
be used for statistic analysis of EEG or for deeper 
understanding of classification. 

• Ability to model the EEG: We are able to generate 
synthetic realizations of the EEG for tests of 
various algorithms. 

  
Statistic analysis 
 

Our next aim was to prove that the classification 
system truly recognizes components bounded with 
movement and not for example systematic noise related 
with used recording method. If this type of interference 
would be founded, the appropriate combination of 
person-electrode is discarded from further experiments. 
Spectral processing was applied on recorded EEG 
extension and flexion movement signals. Spectrograms 
were computed by Fourier transform; short-time 
magnitude spectrum time development was captured by 
1sec long advancing windows (frequency resolution 1 
Hz), with 0,2sec overlay (time resolution 200 ms). The 
data is divided into 10sec long epochs with the 
movement onset in the 5th second (time instant 5.00 
sec). Presented spectrograms were created by averaging 
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 across all realization of each person and electrode. 
Color scale is the same in each spectrogram is same for 
both movements so the figures are mutually 
comparable. Acquired spectrograms and the 
classification results diametrically differed between 
persons, smaller differences were observed among 
electrodes of the same person. 

Our analysis of EEG differed from the detailed 
analysis introduced in work [3] by method of processing 
the spectrum. While work [3] analyzed EEG with the 
standard medical process and with respect to physiology 
of its genesis, we wanted to see EEG in the way the 
classification system used it. That allowed us to 
evaluate its correct function. We used approach known 
from data mining – we let the classification system to 
learn and found the electrodes where the types of 
movement can be easily differentiated and than we 
found out if the founded differences were really relate to 
movement EEG. 
 
 
Result of statistical processing 
 

We divided the differences in EEG to two parts - 
differences between experimental subjects and 
differences between electrodes to underline the 
interpersonal variability and influence of localization of 
brain centers.  
 
 
Differences between experimental subjects 
 

The electrode 11, C1 was selected as an example – 
ERS [5] can be founded on it and it shows interesting 
results. 
We can see easily visible synchronization in Figure 3 
following the performed movement. Here it is evidently 
larger for extension movement in opposite to Figure 4 
where the difference is not so distinctive. This 
corresponds with better archived classification score 
with person 2. 

On the other hand we can see noticeable fall of 
power (desynchronization) on spectral lines ≈ 11-12Hz, 
see Fig. 5. Unluckily the ERD magnitude is the same for 
both extension and flexion movement and thus 
unsuitable for the classification between the 
movements. The synchronization is also neither strong 
enough nor different between movements – this is the 
same for all electrodes of person 1.  

Similar difference as in Figure 3 can be seen in 
Figure 4, conversely the synchronization is expressively 
large for flexion movement. In an opposite to both any 
significant differences between movements cannot be 
found in Figure 6 in both ERD and ERS. 
We can see how big are differences between each 
experimental person’s EEG signal by simple 
comparison of the 4 presented spectrograms. In so doing 
we showed only a small part from the whole EEG 
database. 
 
 

 
 

 
 
 
Figure 3: Estimation of the EEG short time magnitude 
spectrum time development; EEG accompanying both 
movements – person 2, electrode 11 – C1. We can see 
ERS in β band. The event is marked with the black 
circle. Compare the differences in power of ERS 
between the movements. The time instant of the 
performed movement is marked with thin white line in 
the middle of the picture. 

 
 

 
 
 
 
Figure 4: Person 10, electrode 11 – C1: We can see 
clearly βERS and even µERS in EEG short time spectra 
time development. Both are marked with circles. The 
power of ERS depends on the type of movement. The 
classification system works on this electrode 
satisfyingly thanks to ERS.  
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Figure 5: Person 1, electrode 11 – C1: Manifestation of 
ERS cannot be seen in spectrum, but we can see 
noticeable µERD – marked with circles on the picture. 
ERD achieves the same parameters for both types of 
movement. 
 

 
 
Figure 6: Person 3, electrode 11 – C1: We cannot see 
nearly any manifestation of ERD or ERS in spectrum. 
That is in accordance with bad differentiation of both 
movements using the EEG recorded from this electrode. 

 

 
Figure 7: Person 8, electrode 15 – C3p: We cannot see 
ERS in spectrum, only µERD. ERD is approximately 
the same in both movements. 

 
Figure 8: Person 8, electrode 11 – C1: EEG spectrum on 
this electrode again shows µERD about the time of 
movement – here it is stronger for extension movement. 
βERS is also observed, also stronger for extension 
movement. 
 

 
Figure 9 Person 8, electrode 10 – C3: Excellent 
classification score can be achieved using this electrode 
EEG, yet spectrogram does not show large differences. 
 
Differences between electrodes 
 

The differences between EEG electrodes of one 
person are documented on subject 8, because her EEG 
can be successfully classified – see Table 2 below. 
Synchronization following performed movement can be 
clearly see in Figure 8 (electrode 11) which demonstrate 
the rise of power (here in frequency range 20-30Hz) in 
opposite to Figure 7 (electrode 15) where this rise of 
power is nearly not noticeable – this is with accordance 
with the lower classification score. Compare with 
Figure 9 (electrode 10), where so large difference 
between movements cannot be seen from statistical 
processing, yet the excellent classification score is 
achieved. Further analysis is needed in this case. 

Placement of the brain center is responsible to 
extension and flexion movement can be estimated from 
the statistical processing, even better than from 
classification results, which are more dependent on the 
differences between each movement. Here we can 
conclude that the responsible brain center is placed near 
to electrode 11 (C1). 
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 Result of Classification  
 

The classification score for each experimental 
subject and type of movement is shown in Table 2. 
 
Table 2: The classification results – mean and 
uncertainty on 67.7% level of significance (1×σ). 
 
Person 
No. 

Electrode No. 
(10/20 position) 

classification 
score Ext. [%] 

classification 
score F. [%] 

1 6 (FC1) 66.3 ± 3.8 55.4 ± 3.5 
2 10 (C3)  93.3 ± 1.0 91.6 ± 1.5 
3 6 (FC1) 69.8 ± 3.4 82.4 ± 1.9 
4 5 (FC3) 94.6 ± 0.7 90.9 ± 1.8 
5 6 (FC1) 78.1 ± 2.5 85.0 ± 2.8 
6 11 (C1) 67.7 ± 2.9 72.7 ± 3.0 
7 6 (FC1) 91.7 ± 1.2 68.5 ± 1.6 
8 11 (C1) 100.0 ± 0.0 98.1 ± 0.6 
9 5 (FC3) 99.7 ± 0.3 84.4 ± 2.0 
10 6 (FC1) 76.2 ± 3.4 86.1 ± 2.2 
11 5  (FC3) 95.4 ± 1.3 80.0 ± 2.8 
 

With the help of contingency tables – see [7] – we 
have further analyzed classification score and 
determinate the credibility of results.  
The probability of null hypothesis H0: “Result of 
classification does not depend on really performed 
movement.” was estimated using chi square test. The 
analysis is executed on α=99.5 % confidence level. The 
following chi square distribution quantils were 
determined: 

 
Person 01, p=0.36056  
Person 02, p=1.00000 – rejecting H0 
Person 03, p=0.99828 – rejecting H0 
Person 04, p=0.99998 – rejecting H0 
Person 05, p=0.99794 – rejecting H0 
Person 06, p=0.76514 
Person 07, p=1.00000 – rejecting H0 
Person 08, p=1.00000 – rejecting H0 
Person 09, p=1.00000 – rejecting H0 
Person 10, p=0.99888 – rejecting H0 
Person 11, p=1.00000 – rejecting H0 

 
It can be concluded that classification system truly 

recognizes extension and flexion movement for persons 
2,3,4,5,7,8,9,10,11. For remaining two persons the 
results are uncertain. Person 6 - 67.7 and 72.7% 
successfully recognized movements with respect to the 
numbers of available realizations (62 and 66) gives poor 
results. Person 1 archives the worst classification score 
– only 66.3% a 55.4% for both movements. We can see 
the large EEG variability between persons in the 
classification result. 
 
Relation Between Our Results And Other Published 
Works 
 

Works [3] and [5] analysed ERD and ERS 
accompanying movements in detail. Our analyses 
shown these results:  
 
1. ERD can be easily seen in the area of electrodes C1 

and C3 – electrodes 10 and 11 in our experiment. 

Moreover, [3] states that there are significant 
differences between both types of movements in the 
EEG pre- and post-movement epochs. 

2. ERS can be founded more frontally (direction to 
forehead) related to ERD. Work [5] stated that ERS 
reaches its maximal scalp amplitude on 2.5 cm 
frontally from electrode C3 and 5-7.5 cm to the left 
from electrode Cz. Electrodes 5 and 6 are placed in 
this area in our experiment. 

  
Presented conclusions are in compliance with the 

result of our classification. When we look at the best 
classification results we can divide them into two 
categories: 
 
1. Persons, for which the best classification score is 

achieved on electrodes 5 and 6 – here the system 
probably based the classification on ERS. 

2. Persons, for which the best classification score is 
achieved on electrodes 10 and 11 – classification 
based on the differences in ERD between 
movements. 

 
Conclusion and next steps 
 

We successfully applied existing classification 
system on more difficult task of EEG movement 
direction classification. Used setting was the same as in 
our previous work dealing with classification of distal 
and proximal movement. We can assume that the same 
model will be possible to use for other types of 
movement activity classification. 
We have proved that the results of classification are not 
random for 9 out of 11 experimental persons by chi 
square test application on α=99.5 % confidence level. 

Further we analyzed reached 
classification score with the EEG data using 
the data mining techniques. We concluded that the 
classification system truly recognizes movement 
components of the EEG signal. Localization of 
electrodes achieving the best classification score is in a 
good accordance with the results of physiological 
analysis of EEG presented in [3] and [5]. 

These results indicate with high confidence level 
that the classification system truly recognizes movement 
components in EEG. 

Our next work will be focused on increasing the 
classification score by additional analysis of other 
parameterization and studying the trained models with 
the data mining algorithms [7]. 
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