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Abstract: Object recognition requires the solution of 

the binding and segmentation problems, i.e., 

grouping different features of an object to achieve a 

coherent representation. Synchronization of neural 

activity in the γγγγ-band has often been proposed as a 

putative mechanism to solve these problems. In the 

present work, a network of Wilson-Cowan 

oscillators is used to segment simultaneous objects, 

and recover an object from a partial or corrupted 

information, by implementing two gestalt rules: 

similarity and previous knowledge. The network 

consists of H different areas, each devoted to 

representation of a particular feature of the object, 

according to a topological organization. The 

similarity law is realized via lateral intra-area 

connections, arranged as a “Mexican-hat”. The 

previous knowledge is realized via inter-area 

connections, which link properties belonging to a 

previously memorized object. A global inhibitor 

allows segmentation of several objects. Simulation 

results, performed using three simultaneous input 

objects, show that the network is able to detect an 

object even in difficult conditions (i.e., when some 

features are absent or corrupted). Objects with 

excessive corruption are correctly rejected. The 

network exhibits a good compromise between 

sensitivity (capacity to detect true positives) and 

specificity (capacity to reject false positives). 

 
Introduction 

 

Execution of many cognitive functions requires that 
different features of perception are grouped together 
(binding problem) to permit the recognition of natural 
scenes and the achievement of coherent object 
representation. Of course, features of different objects, 
simultaneously present in the same scene, must be 
maintained distinct and independently processed 
(segmentation problem). 

In general, the neural system utilizes a limited 
number of features to classify and recognize perceived 
objects [1]. An early hypothesis is that the presence of 
an object is signaled by a specialized neuron, which 
would process individual features via a feed-forward 
and hierarchically structured process, and would encode 
increasingly complex relationships [2]. According to 
this idea, the simultaneous presence of two objects in 
the same scene is signaled by activation of two distinct 
specialized neurons. This mechanism, however, exhibits 
several drawbacks, and is generally rejected in the 

neurophysiological literature today. First, considering 
all possible combinations of features lead to a 
combinatorial explosion of possibilities, hence to an 
excessive number of individual neurons. Furthermore, 
with this mechanism, it is difficult to incorporate new 
knowledge and to deal with entirely novel objects [3]. 

The previous limitations may be overcome by the 
so-called “assembly coding”. In this mechanism the 
presence of an object is not signaled in the nervous 
system by individual units, but rather by the concurrent 
activity of many neurons simultaneously excited, each 
signaling a single feature, located in proximal or distal 
cortical areas and linked via functional reciprocal 
connections [1]. Two fundamental problems, however, 
arise in this context. How segmentation can be achieved 
in assembly coding, avoiding that features of two 
distinct objects are erroneously grouped together?  What 
are the fundamental cues exploited to generate this 
segmentation, i.e., to group simultaneously active 
neurons into distinct objects? 

One possible solution to the first problem assumes 
that different features of an object are grouped together 
via synchronization of neural firing [4-8]. Cortical 
neurons, in fact, are often engaged in synchronous 
activity in the γ-frequency range (40-60 Hz) [6,9]. This 
synchronization may be distributed both within the 
same cortical area and among distant areas, and is not 
locked to external stimuli, i.e., it depends on internal 
connections among neurons (i.e., on an internal 
representation of objects). According to synchronization 
hypothesis, neurons that fire in phase would signal 
attributes of the same object, while neurons firing out of 
phase would signal attributes in different objects. This 
hypothesis, although still debated in the literature and 
not universally accepted [10] has received important 
experimental support recently from a variety of studies 
[11-13].  

As to the second question, fundamental ideas on the 
sensory cues that may be employed for segmentation are 
provided by the Gestalt Psychology [14]. Gestalt 
grouping rules can be of low-level, reflecting basic 
properties of sensory inputs (such as closeness, 
smoothness, boundaries and common fate), or high-
level, reflecting more complex features extracted from a 
pre-processing system (such as similarity and previous 
knowledge). 

The role of neural synchronization in binding and 
segmentation can be critically analyzed using  
mathematical models and computer simulation 
techniques. Indeed, many models of oscillating neural 
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 networks, with a different level of complexity and of 
physiological reliability have been proposed in past 
years, with encouraging results. In these models, the 
rules used for segmentation are generally inscribed into 
the synaptic connections linking oscillators. However, 
most of these studies are focused on low-levels Gestalt 
cues, such as proximity,  smoothness and common fate 
to segment a visual scene at an early processing visual 
stage [15-17], whereas just a few attempts to use high-
levels rules to classify more complex objects at a higher 
mental level have been performed [4,5,18].  

The objective of the present work is to develop a 
neural network of oscillating units, focusing attention 
especially on segmentation using high-level cues with 
possible emphasis on higher cortical functions. The 
essential concept of our model is that classification and 
representation of high-level objects may be realized 
starting from a partial or incomplete sensory 
information, by grouping together a limited set of 
fundamental features or attributes. We assume that these 
basic features are extracted from sensory perception at 
an earlier processing stage, and are arranged in a 
topologically ordered fashion at some areas of the 
cortex. Features are then linked together (binding) and 
separated (segmentation) by synchronization in the γ-
range using the similarity and previous knowledge 
Gestalt rules, in order to arrive at high-level (semantic) 
object representation. 

To illustrate the main ideas of our model, we 
propose a simple implementation, in which complexity 
is intentionally maintained at a minimum level.  The 
objective is to show how this network may work, its 
virtues and robustness. More complex and 
physiologically founded networks may be naturally built 
in subsequent works.  
 
Materials and Methods 

 
We assume that the model is composed of N 

oscillating neural groups, subdivided into H distinct 
cortical areas. Each neural group may be silent, if it 
does not receive enough excitation, or may oscillate in 
the γ-frequency band, if excited by a sufficient input. A 
single oscillator in the network is described by means of 
Wilson-Cowan equations, with coupling terms chosen 
to allow fast and efficient synchronization and a global 
inhibitor to allow desynchronization among properties 
in different objects [17]. 

A schematic representation of the main topological 
aspects of the network, is presented in Fig. 1. 

Each area is devoted to the representation of a 
specific attribute or feature of the object (for instance 
color, orientation, geometrical form in case of visual 
stimuli, tone in case of auditory stimuli, body position 
in case of somatosensory stimuli, etc…). Hence, one 
object is represented as the collection of H features (one 
feature per each area). We assume that each attribute is 
not immediately present in the sensory input, but has 
been extracted from a previous processing stage in the 
neocortex.  

 
Figure 1: Schematic diagrams describing the model 
structure. The model is composed of H different cortical 
areas each represented as a mono-dimensional chain of 
M Wilson-Cowan oscillators. Each oscillator receives 
coupling terms both from oscillators in the same area 
(lateral intra-area connections), and from oscillators in 
different areas (inter-area synapses). Moreover each unit 
of the network receives an inhibitory signal from the 
global inhibitor (GI). 
 

Neural groups within each area represent the value 
of that particular attribute according to a topological 
organization. This means that two proximal neural 
groups in the area signal the presence of two similar 
values, while distant groups signal the presence of 
different values. This topological organization is very 
frequent in the neocortex to represent sensory 
modalities (let us consider, for instance, the orientation 
map or the color map in the visual cortex, the tonotopic 
map in the auditory cortex, etc…). 

Neural groups within the same area are connected 
via lateral excitatory and inhibitory synapses (say L in 
the subsequent text). These lateral connections are 
organized according to a classical “Mexican hat” 
disposition. This means that a neuron excites (and is 
excited by) its proximal neurons in the area, whereas it 
inhibits (and is inhibited by) more distal neurons. As it 
is well known, excitatory neurons in the cortex may 
inhibit proximal neurons in the same area via inhibitory 
interneurons. Hence, all negative synapses within each 
area are realized via a bisynaptic connections, from 
excitatory units to inhibitory units, and then from the 
latter to other excitatory units. 

Two neural groups belonging to different areas may 
be connected via symmetrical excitatory synapses (say 
W in the subsequent text). These reflect the existence of 
long range functional connections among different 
cortical areas. These synapses are normally equal to 
zero, but may assume a positive value when the two 
neural groups have been simultaneously active in the 
past during the learning phase. Hence, these synapses 
store a “previous knowledge” on whether different 
attributes occurred together in the past during the 
presentation of objects.  

Lateral intra-area connections implement a similarity 
criterion, i.e., neural groups which signal a similar value 
for the attribute tend to be simultaneously active. Inter-
area synapses implement a previous knowledge 
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 criterion, i.e., attributes which were collected together in 
the past tend to be grouped again in future experience. 

Finally, in self-organizing networks the input to a 
neuron is generally computed as the scalar product 
between a sensory vector and the vector of synapses 
entering the neuron [19]. In the present study, for the 
sake of simplicity, the input to each neuron is described 
as a scalar quantity, ranging between 0 and 1, which 
reflects the similarity of the input with the value 
signaled by the given neuron.  
 
Results 

 
Simulations have been performed assuming that 

three objects are simultaneously given as input to the 
network. Each object is represented by four exact 
attributes during the “storage” phase. These attributes 
are stored in the matrix W of the inter-area synapses, 
reflecting previous knowledge. The presence of lateral 
connections, L, which cannot be modified by 
experience, produces an “activation bubble” within each 
area, i.e., not only the stimulated neurons oscillate, but 
also neurons in the same area signaling similar 
properties. The width of the excitation bubble, hence the 
degree of specificity depends on a balance between 
lateral excitation and lateral inhibition. In this condition, 
synapses W in the model, which incorporate previous 
knowledge, not only ensure a rapid synchronization 
between properties of the same object, but also allow 
restoration of lacking information. In order to underline 
this aspect, during the “retrivial” phase we will assume 
that objects can be presented in incomplete form (i.e., 
lacking some attributes) and/or in a corrupted form (i.e., 
some attributes may be a little different from the exact 
ones). Aim of the network is to recognize previously 
learned objects, despite a certain degree of 
incompleteness and/or corruption. 

The first simulations (figure 2) have been performed 
assuming the absence of one property in each object. 
The other three properties are stimulated with an input Ii 
= 0.8. The figure shows network activity in all neural 
groups at different snapshots during the simulation. The 
network recovers the lacking property in each object; in 
other words, the object can be completely reconstructed, 
re-creating the property which is not given as input.  

Figure 3 shows the same simulation, assuming the 
absence of two properties in objects 2 and 3 (i.e., only 2 
properties over 4 are given as to these objects). With the 
basal value for the synapses W, the information is 
insufficient to recuperate the entire object.  

Just two properties may be sufficient to recover an 
entire object from previous knowledge, if we assume a 
stronger value for the synapses W. The simulation 
results are not shown for the sake of brevity, since they 
are almost indistinguishable from those presented in 
Fig. 2. 

In conclusion, the previous simulations illustrate the 
possibility to reconstruct an entire object from previous 
knowledge starting from partial information, still 
satisfying   the   binding   and   segmentation    problem. 

 

 
 

Figure 2: Network activity at different snapshots during 
the numerical simulation. Each pixel represents an 
oscillator. The emerging height is proportional to the 
corresponding oscillator’s activity. In the simulation, 
three objects are present in the sensory input, each 
lacking of one attribute. After a brief transient from an 
initial random condition, the three objects are perfectly 
reconstructed by the network, recovering the fourth 
lacking property. Separation among the three objects is 
achieved via synchronisation of neurons responding to 
the same object and desynchronisation of neurons 
coding for different objects. 

 

 
 
Figure 3: Network activity at different snapshots during 
the simulation. Simulation is similar to that of Fig.2. 
However, in this case, we assumed the absence of one 
property in one object, and the absence of two 
properties in the other two objects. The network is not 
able to recover the two lacking properties, hence only 
one object is correctly reconstructed. 

 
 
 

Reconstruction from partial information depends on 
information stored in the synaptic matrix W. The higher 
the values of the trained synapses the smaller the 
number of properties necessary to recover an 
incomplete object.  
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 Further simulations were performed assuming that 
some attributes are corrupted from the “exact” value. 
These simulations are summarized in Table 1. This table 
shows the percentage of success in 10 different trials 
(with random initial values for the network) and the 
settling time, i.e., the time required for achieving a 
synchronization.  

In the first simulation (Table 1, first column) we 
assumed that the network receives two correct 
properties for each object. We remind that, according to 
Fig. 3, two properties are insufficient to recover the 
entire object. However, we now assume that object 1 
also receives a property that is shifted by just 1 position 
from one of the lacking properties. Moreover, we 
assume that also objects 2 and 3 receive a “corrupted” 
property, which differ by just 1 position from the exact 
one. Thanks to lateral connections, the existence of this 
“similar” property is sufficient to evoke the overall 
object, including the fourth lacking property. Table 1 
shows that the percentage of success is 90%. The time 
required for achieving a synchronization is short 
(average 30-40 ms).  

 
Table 1: Percentage of success in 10 trials for three 
simulated conditions, and average time required to 
achieve synchronisation. In the three simulated 
conditions (A, B and C), all the three objects are present 
in the sensory input. Each object receives two exact 
properties and a third corrupted property which may 
differ by one position (configuration i) or by two 
positions (configuration ii) from the exact value (the 
fourth property is lacking). In condition A, 
configuration i holds for all the three objects. In 
condition B, configuration i holds for two objects, 
whereas configuration ii holds for one object. In 
condition C, configuration i holds for one object, and 
configuration ii holds for two objects. The desired 
behaviour of the network (success event) is the 
recognition of the objects belonging to configuration i. 

condition A condition B condition C 

recognition of  
three objects 

recognition of  
two objects 

recognition of  
one object 

9/10 10/10 9/10 
36.1 ms 38.5 ms 49.11 ms 

 
However, if one property is shifted by 2 from the 

original one (Table 1, second and third columns), the 
object cannot be reconstructed. Nevertheless, the 
remaining objects (with a property corrupted by just one 
position) are correctly reconstructed. Hence, the 
network works well to reconstruct objects with a low 
degree of corruption, avoiding reconstruction of objects 
with excessive corruption.  
 
Discussion 

 
Objects are defined as a collection of different 

features, which must be grouped together to achieve a 
correct object reconstruction, but must be taken apart 
from features of different objects to avoid confusion. 

Moreover, these features are processed in distinct areas 
of the brain, and are generally reproduced via a 
topologically ordered organization. The problem still 
remains open on how the brain can integrate this sparse 
and highly distributed information to achieve a coherent 
and cohesive perception of the external world. Several 
authors in past years have linked fast oscillatory activity 
to learning and memory, especially in the perception of 
previously recognized objects [11,20,21].  

Aim of this work is to propose a simple model for 
high-level object representation, which exploits two 
fundamental Gestalt rules: previous knowledge and 
similarity, together with synchronization among 
oscillatory neural populations. Previous knowledge is 
incorporated into the model in the synapses linking 
properties in one area to properties in another area. The 
similarity principle ensues from the presence of lateral 
(excitatory and inhibitory) synapses within the same 
area, which are arranged according to the classical 
“Mexican hat”. The consequence of this specific 
disposition of synapses is that excitation of a neural 
group causes the occurrence of an excitation bubble, 
i.e., activation of one feature is always associated with 
the activation of similar features in the same area. As a 
consequence, similarity interferes with previous 
knowledge: not only the exact features of a perceived 
object are linked together via inter-area synapses, but 
also similar features which lie inside the activation 
bubble, and so are simultaneously co-active.  

Simulation results, obtained by using a simple 
network with a minimum of internal complexity, and 
using an abstract representation of objects (as a 
collection of 4 features) demonstrate that the proposed 
mechanism may actually work, producing a high 
percentage of success (more than 90%). Moreover, 
simulation results provide some interesting indications 
on the ease or difficulty to recognize multiple objects, 
which, if confirmed on subsequent more physiological 
models, may represent the subject for future validation 
studies via psychophysical tests.  

A first important aspect of our model is the 
possibility to recognize objects starting from an initial 
incomplete representation. This mechanism in part 
resembles that exploited in auto-associative memories 
[19]. Another important point in our model is the trade-
off between sensitivity and specificity. In the model, 
this trade-off can be managed acting on the extension of 
lateral synapses, that is on the dimension of the 
activation bubble. Sensitivity means the capacity to 
detect an object even in difficult conditions, i.e., if some 
features are absent or corrupted from the original ones 
(that is the capacity to detect true positives by reducing 
false negatives). Specificity means the capacity to 
discriminate one object from a similar one, by 
maintaining the two representations separate (i.e., the 
capacity to avoid false positives still rejecting true 
negatives). Of course, good sensitivity may be 
associated with poor specificity, and vice versa. 

In our model, if the activation bubble is small (as in 
the simulations summarized in Table 1) the network 
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 exhibits a good compromise between sensitivity and 
specificity. It is able to reconstruct objects if one feature 
is lacking and another feature is corrupted by one 
position, while an object is not reconstructed if a 
property is corrupted by two positions. A greater 
sensitivity may be achieved by extending the lateral 
excitatory synapses (unpublished simulations) but 
worsening specificity.  
 
Conclusions 

 
The present model represents a first attempt to 

achieve object reconstruction and segmentation, by 
implementing high-level Gestalt rules within the 
framework of neural synchronization in the γ-band. 
Results show that the network is able to reconstruct 
partially corrupted objects, and to reject objects with a 
higher level of corruption or incompleteness, with a 
high percentage of success (greater than 90%) and with 
acceptable settling times (30-40 ms). At present, the 
model does not aspire to reflect neurophysiological or 
neuroanatomical knowledge in detail, but rather to 
propose a computational mechanism, which exploits 
and extends some current ideas on memory and learning 
[4,5,18,22]. Future lines may be directed both toward an 
improvement of the computational aspects (i.e., the 
capacity to recognize objects in different conditions 
with a flexible and reliable performance) or toward a 
more precise connection with neurophysiology and 
neuroanatomy. 
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