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Abstract: The  detection  of epileptic spikes  (ESs) 
occurring in the electroencephalogram (EEG) 
between seizures is vital in the diagnosis of epilepsy. 
However, automated epileptic spike detection 
methods based on this approach suffer from false 
detections due to the presence of numerous types of 
artefacts (muscle activity, eye blinking activity) and 
non-epileptic waveforms (sharp alpha activity) 
usually referred as transient events. In this paper, we 
introduce an automated method which detects 
transient events in EEG recordings and classifies 
those as epileptic spikes (ESs), muscle activity 
(EMG), eye blinking activity (EOG) and sharp alpha 
activity (SAA). The proposed methodology involves: 
(i) signal preprocessing and transient event 
detection, (ii) clustering of transient events, (iii) 
feature extraction and (iv) classification of transient 
events using support vector machines (SVMs). Other 
classification schemes were tested as well. Our 
methodology was evaluated on data from 25 subjects 
and the best obtained overall accuracy is 84.83%.  
Keywords: EEG, Epilepsy, Clustering, Spike 
Detection, Support Vector Machines 
 
Introduction 
 

Electroencephalography (EEG) provides a direct 
measure of cortical activity with millisecond temporal 
resolution. EEG is the recording of the electrical 
potentials generated by the cerebral cortex nerve cells. 
There are two types of EEG depending on where the 
signal is taken in the head: scalp or intracranial. For 
scalp EEG, which is the focus of this study, small metal 
discs, known as electrodes, are placed on the scalp with 
good mechanical and electrical contact. Intracranial 
EEG is obtained by special electrodes implanted in the 
brain during the surgery. The EEG has been found to be 
a valuable tool in the diagnosis of numerous brain 
disorders. Nowadays, the EEG recording is a routine 
clinical procedure and is particularly useful in the 
investigation of epilepsy [1]. 

Epilepsy is a disorder of brain function that affects 
about 1% of the population. It is characterized by 

sudden recurrent and transient disturbances of mental 
function, caused by excessive discharge of groups of 
brain cells. In the case of epilepsy two categories of 
abnormal activity are recognized in the EEG recordings: 
the inter-ictal activity which takes place between 
seizures (when the patient does not have seizures) and 
the ictal activity which takes place during an epileptic 
seizure. The most common forms of the inter-ictal EEG 
activity are: the individual or isolated spikes, the sharp 
wave and the spike wave complex [1-3]. Throughout 
this paper, no distinction is made among spike, sharp 
wave and spike wave complexes and therefore they are 
collectively termed epileptic spikes (ESs). 

The detection of epilepsy can be achieved by visual 
scanning of inter-ictal EEG recordings, for ESs by an 
experienced EEGer. However, visual review of the vast 
amount of EEG data has serious drawbacks. Visual 
inspection is prohibitively very time consuming and 
inefficient, especially in the case of long recordings. In 
addition disagreement among the EEGers on the same 
recording is possible due to the subjective nature of the 
analysis. Thus computer-assisted analysis becomes quite 
necessary in practice [4-7]. 

To date, many automated detection algorithms have 
been developed. They are based on: (i) mimetic [2,8-9], 
(ii) template matching [10], (iii) parametric [11], (iv) 
artificial neural network [3,5,6,12-14] and (v) 
knowledge–based rules approaches [5,6,12,13,15-17]. 
Those methods recognize features to detect ESs using 
objective criteria. Each method has some unique 
advantages, but none of them alone can fulfil the 
requirement of ES detection. This is due to the fact ESs 
are similar to waves which are part of the background 
activity (SAA) and to artefacts (EMG and EOG). The 
majority of the reported works address only ES 
detection and only a few have been previously applied 
to classify transients events [16,18,19].   

In this paper we describe an automated method 
based on a four-stage schema (Fig.1), which detects 
transient events in EEG recordings and classifies those 
as ES, EMG, EOG and SAA. In the first stage, a data 
driven segmentation algorithm is used to eliminate areas 
of low background activity and candidate transient 
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 events are detected by a windowing procedure. In the 
second stage, transient event clusters are automatically 
identified and for each transient event cluster its 
prototype shape is accurately determined. In the third 
stage, sixteen time-domain and frequency-domain 
features of each prototype transient event are extracted. 
Finally in the fourth stage, the prototype transient events 
are classified as epileptic spike (ES), muscle activity 
(EMG), eye blinking (EOG) and sharp alpha activity 
(SAA) by means of a Support Vector Machine (SVM). 
Two other classification schemes, Linear Discriminant 
Analysis (LDA) and Quadratic Discriminant Analysis 
(QDA) were also tested but reported lower accuracy. 
Our approach is novel since it does not require a priori 
knowledge of the number and the shape of transient 
event clusters. Furthermore, it is fully automatic and no 
additional operations are required by the neurologist. 
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Figure 1: The proposed four-stage methodology 
 
Materials and Methods 
 

A. Signal Preprocessing and Transient Event 
Detection 

Our approach is based on the fact that a transient 
event appears as a peak in the EEG recording. 
Therefore, the first stage is the elimination of low 
background activity and the extraction of the peaks  
from the EEG recording. To eliminate areas of low 
background activity, we first choose a threshold T 
which depends on the mean absolute value of the the 
whole EEG signal in each single channel each  montage. 
The threshold T is calculated as follows: 

∑⋅=
N

i
ix

N
T 1

 (1) 

where xi represents the discrete input values and N is the 
number of samples. 

This threshold is used to identify peaks in the EEG 
signal. Windows with a constant length of 91 samplng 
points (355 msec) is used, centred at each identified 
peak†. If a larger peak‡ is found in the window, the 
window is centred at this peak; otherwise the window of 
91 signal points is considered as candidate transient 
event. The procedure is illustrated in Fig.2. 
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Figure 2: A schematic representation of the first stage 
 

B. Clustering of Transient Events 
The clustering of the transient events performs as a 

pre-classifier (assigning each transient event to a 
cluster) and thus, not only reduces the computation time 
but also increases the overall detection performance 
[20]. In this stage, transient event clusters are 
automatically detected and for each transient event 
cluster its prototype shape is accurately determined. The 
detection of the number of clusters in EEG recordings is 
based on the minimization of the regularized cost 
function C(x,y) with respect to the distance of the 
candidate transient events from the cluster centres (first 
term in Eq.(2)) and with respect to the distance of the 
cluster centres from each other (second term in Eq. (2)): 
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where Ĩj is a multiplier unique to each cluster and  

                                                 
† The length of the window has been selected using expert knowledge 
about the size of each transient event e.g. a spike has duration 20-70 
msec, a sharp wave lasts 70-200 msec, an EMG wave is less than 30 
msec and an EOG wave lasts more than 150 msec. 
‡ The largest peak in a window is called vertex. 
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are indicator functions. Ny(ω)
 is the neighbourhood  of the 

cluster center y(ω), x(i)∈ℜn is a pattern - in our case a 
transient event - p is the number of patterns {x(i): i = 
1,2,…,p} and k the number of clusters and arg 
minm||x(i)-y(m)||2 returns the argument which minimizes 
the norm ||x(i)-y(m)||2. More details about the method can 
be found in [21]. 

Using k-means clustering we start choosing an initial 
set of prototypes. This implies the partition of the 
patterns into k clusters. Each cluster is represented by a 
prototype, which is computed as the centroid of the 
patterns belonging to that cluster. The steps of the 
clustering procedure are shown below. 
 

Step 1                   Set initial parameters: 
1.1 k, initial number of clusters 
1.2 Tp, minimum number of patterns is 

one cluster, 
1.3 Td, minimum distance between two 

centroids (inter-cluster distance) 
Step 2                   Partition the space of the patterns 
                              into k clusters minimizing the cost 
                              function C(x, y).  
Step 3                   Delete clusters having p< Tp. 
Step 4                   Combine clusters having d< Td. 
Step 5                   Iteration of steps 2-4, until no 
                              significant change of the number 
                              of prototypes is reached. 

 
C. Feature Extraction 
To our knowledge, time-domain and frequency-

domain features of the EEG waveforms have been used 
in the literature [3,6,7,12-19]. In this work, we use 
sixteen features of each prototype transient event, which 
are defined as (Fig. 3): 

A

D

D1 D2

xt

xt-1

xt+1

SLP1 SLP2

A

D

D1 D2

xt

xt-1

xt+1

SLP1 SLP2

 
Figure 3: Features extracted from each transient event 

 
1) Duration (D): D1 and D2 represent the duration of 
each transient event before and after the vertex xt. D 
represents the sum of D1 and D2. The D1 and D2 
durations are measured from the vertex to the point 
where the slope changes rapidly (turning point). This 

means that the duration is measured at the point where 
there is more than a 60% drop in the slope or a change 
in the direction of the slope.   
 
2) Area (Α): It is the area below the curve for the 
calculated duration (grey region in Fig. 3). 
 
3) Average slope (ASLP): It is given as: 

)(
2
1

21 SLPSLPASLP += , (5) 

where SLP1=xt-xt-1 and SLP2=xt+1- xt are the slopes of 
the lines connecting the vertex and the two turning 
points (Fig. 3).  
 
4) Sharpness (SH): It is the changing rate of the slope at 
the vertex point. If the vertex point is denoted as xt, SH 
can be calculated as: 

)()( 11 −+ −−−= tttt xxxxSH ⇒  

12 SLPSLPSH −= . (6) 
 
5) Standard Deviation (STD): It is defined as:  

∑
=

−=
L

y
L

STD
1

2)(1
ι

µ xi , (7) 

where yi represents the discrete input values, L is the 
number of samples for each prototype transient event 

(L=91) and µy =∑
=

L

i

i

L
y

1

 is the mean. 

6) Dominant frequency (DF): In order to estimate the 
Power Spectrum Density (PSD) of the transient event, 
an autoregressive model (AR) of order 10 is used. The 
frequency where the maximum amplitude of the PSD 
was observed is the dominant frequency (DF). 
 
7-16) Discrimination of Power Spectrum Density 
(DPSD): The PSD of each transient event is divided into 
ten distinct frequency ranges. The average of the PSD 
for each one of these is called Discrete Power Spectrum 
Density (DPSD). 

 
D. Classification of Transient Events 
The classification of transient events into predefined 

classes (ES, EMG, EOG and SAA) is achieved using 
Support Vector Machines (SVMs) [22,23], Linear 
Discriminant Analysis (LDA) [24] and Quadratic 
Discriminant Analysis (QDA) [25]. 

D1. Support Vector Machine (SVM): It is considered 
as a state-of-the-art classifier for both linear and non-
linear classification. SVMs belong to the family of 
kernel based classifiers. SVMs implicitly map the data 
into the feature space where a hyperplane (decision 
boundary) separating the classes may exist. This 
implicit mapping is achieved with the use of kernels, 
which are functions that return the scalar product in the 
feature space by performing calculations in the data 
space. The simplest case is a linear SVM trained to 
classify linearly separable data. After re-normalisation, 
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 the training data, {xi, yi} for i=1, … , m and yi∈{-1,1}, 
must satisfy the constraints in Eq. (8) and (9), where w 
is a vector containing the hyperplane parameters and b 
is an offset. 

1+≥+ bwxi  for  1+=iy , (8) 

1−≤+ bwxi  for 1−=iy . (9) 
The points, for which the equalities in the above 

equations are satisfied and have the smallest distance to 
the decision boundary, are called support vectors. The 
distance between the two parallel hyperplanes on which 
the support vectors for the respective classes lie is called 
the 'margin'. Thus, the SVM finds a decision boundary 
that maximises the margin (Fig. 4).  
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Figure 4: A hyperplane that maximizes the separating 
margin between two classes (indicated by data points 
marked by “■”s and “●”s). Support vectors lie on the 
boundary hyperplanes of the two classes. 
 

Finding the decision boundary, then it becomes a 
constrained optimization problem which must minimize 
||w||2 subject to the constraints (Eq. (8) and (9)) and is 
solved using Lagrange multipliers. The general solution 
is given by Eq. (10). 

〉〈= ∑ xxyaxf ii
i

i ,)( , (10) 

where αi are Lagrange multipliers. 
In the case of non-linear classification, kernels are 

used to map the data into a higher dimensional feature 
space in which linear classification may be possible. 
The general solution will then be of the form shown in 
Eq. (11). Depending on the choice of the kernel 
function, SVMs can provide both linear and non-linear 
classification. 

〉〈Κ= ∑ xxyaxf ii
i

i ,)( . (11) 

Many implementations of kernels can be found in 
literature, whereby four popular are: 

• Linear: 
xxxx T

ii =Κ ),( . (12) 
• Polynomial: 

dT
ii rxxxx )(),( +=Κ γ , γ>0. (13) 

• Radial Basis Function (RBF): 

)exp(),(
2

xxxx ii −−=Κ γ , γ>0. (14) 

• Sigmoid: 
)tanh(),( rxxxx T

ii +=Κ γ . (15) 
Where γ, r and d are kernel parameters. In this 
implementation, we construct an RB-SVM by using an 
RBF as the kernel function (Eq. 14).  

Finally, note that although the SVM classifiers 
described above are binary classifiers, they are easily 
combined to handle the multiclass case. A simple, 
effective combination trains N one-versus-rest 
classifiers (say, “one” positive, “rest” negative) for the 
N-class case and takes the class for a test point to be that 
corresponding to the largest positive distance [26]. 
D2. Discriminant Analysis (QDA and LDA): It provides 
an optimal classification rule (in the sense of 
minimising known errors) for discriminating of one 
population against another. Given a training sample 
consisting of m alternatives whose classification is a 
priori known, the objective of the method is to develop 
a set of discriminant functions maximizing the ratio of 
among-groups to within-groups variance. In our 
application, both linear (LDA) and quadratic 
discrimininant analysis (QDA) are applied. QDA can be 
seen as an extension of LDA allowing for curved 
(instead of linear) boundaries between populations. In 
the general case where the classification involves q 
groups, q-1 linear/quadratic functions of the following 
forms are used: 

nnklklklklkl gbgbgbaZ ++++= ...21 21
, (16) 
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for the linear and the quadratic case, respectively. The 
calculation of the coefficients 

iklb , 
ihklc  and the 

constant term kla  is achieved using the within-group 
covariance matrices for classes Ck and Cl. Classification 
is achieved using the score of an alternative on each 
discriminant function. 
 
Results 
 

For the evaluation of our methodology, EEGs from 
25 subjects (13 epileptic and 12 normal) from the 
Neurology Department at University Hospital of 
Ioannina, Greece is used. More precisely, our dataset 
consists of 858 prototype transient events (274 ES, 254 
EMG, 81 EOG, and 249 SAA) annotated by two 
experienced neurologists. The training set consists of 
50% selected transient events from each category, and 
the remaining transient events are used for testing. The 
performance of our methodology is determined 
measuring the Sensitivity (Se), the Selectivity (Sel). 
Also we used the Accuracy (Acc) which is defined as: 

ed  events  classifitotal # of
s fied eventtly classi#of correcAcc = . (18) 

Table 1 displays the results obtained from the use of 
three classifiers (SVM, QDA, and LDA). All the tested
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 Table 1: Performance of the SVM, QDA and LDA classifier 
 

 SVM QDA LDA 

 Se (%) Sel (%) Se (%) Sel (%) Se (%) Sel (%) 

ES 85.42 88.81 67.15 82.88 63.5 86.14 

EMG 85.77 80.71 89.06 83.21 85.83 80.15 

EOG 58.82 72.29 82.5 80.49 82.93 87.18 

SAA 94.74 88.89 79.03 70 85.48 69.28 

Acc (%) 84.83 78.55 78.32 

classification schemes performed comparably but the 
use of SVM was found to be the most efficient. The 
transient event classification methodology was tested 
on our EEG dataset and demonstrated a Se and Sel of 
85.42%, 88.81% for ESs, 85.77%, 80.71% for EMG, 
58.82%, 72.29% for EOG, and 94.74%, 88.89% for 
SAA, respectively. 

 
Discussion 

 
In this study, we introduce an innovative method 

which detects transient events in EEG recordings and 
classifies those as ESs, EMG, EOG and SAA. Our 
method accomplishes signal preprocessing and 
transient event detection, clustering of transient events, 
feature extraction and classification of transient events 
by means of SVMs. The use of SVM is advantageous 
since it improves the efficiency of the methodology. 
This can be confirmed comparing with the QDA and 
LDA classifiers. SVM demonstrated a 6% increase in 
performance (the classification accuracy for the QDA 
and LDA was around 79%, Fig. 5).   
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Figure 5: Comparison of classification accuracy for 
the SVM, QDA and LDA classifier  
 

Looking at a more technical level inside the SVM, 
it should be noted that the selection of the kernel K is 
of major importance for the performance of the 
classifier. In our case an RBF kernel (Eq. 14) has been 
applied. Alternative approaches, such as linear (Eq. 12) 

or polynomial (Eq. 13) were not used due to the nature 
of our problem. The linear kernel cannot handle non 
linear separable problems; the polynomial kernel has 
more hyperparameters than the RBF kernel, fact that 
influences the complexity for model selection decision 
[26,27].  

The literature presents various approaches which 
applied to EEG classification. The majority of the 
related works adressed only ES detection where the 
number of false positives due to spike-like artefacts 
and background activity is high. Therefore, comparison 
of our methodology with other detection techniques 
given in the literature is quite difficult. Furthermore, a 
direct comparison with other methods is difficult due to 
the data sources used, due to different recording types, 
displaying montages, channel numbers, degree of 
artefact and status of subject used. 

It is well established that, apart from the ES 
detection on a single channel itself, other contextual 
information is also vital to the neurologists when 
classifying an event as epileptic or non-epileptic. This 
information is related to other channels ES activity 
which takes place at the same time. The proposed 
method does not take advantage of the spatial 
information but “inspects” each recording channel 
indivindually. Our future work will focus on the use of 
such information in making the final diagnosis. 

 
Conclusions 

 
An innovative approach for the automatic 

detection and classification of transient events in 
multichannel EEG recordings is presented. Our 
methodology does not eliminate the artefacts (EMG, 
EOG) and the background activity (SAA), but it detects 
and classifies it into the appropriate categories 
successfully using an SVM classifier.  The 
classification of every transient event is a task that has 
never been accomplished before succesfully. The 
proposed methodology can be used as an assistant to 
the neurologists in making their decision during 
clinical practice.  However, further testing and clinical 
evaluation is required. 
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