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Abstract: Optimal input design for parametric 
identification of the SISO state space 
compartmental models of pharmacokinetic systems 
is presented. The optimal input, which ensures the 
best accuracy of the parameter estimates, is 
designed on the basis of the initial parameter 
estimates. These estimates are calculated on the 
basis of the output measurements collected during 
the intuitive experiment. The sensitivity criterion is 
adopted and presented in terms of a non-linear 
programming problem with constraints. Two 
constraints imposed on the optimal input are 
considered and compared: the dose and the energy 
constraint. The two constraints define two classes of 
admissible inputs: the equienergy and the equidose 
inputs, respectively. The parameters are estimated 
using the prediction-error method. 
 
Introduction 
 

The parametric approach (grey-box) to the 
identification of pharmacokinetic systems is presented. 
Parametric identification consists of two steps: the 
formulation of the model structure and the parameter 
estimation. The model structure is formulated on the 
base of a priori knowledge concerning the system [1]. 
The model structure can be described in terms of 
differential equations with unknown parameters. In the 
estimation procedure the unknown values of the model 
parameters are estimated so that the best fit of the 
model’s output to the measurements is achieved. 

The choice of experiment variables in such a way 
that the data become maximally informative is termed 
“optimal experiment design” [2]. In this paper the 
optimised variable is the input signal u . In 
pharmacokinetic studies the optimal experiment design 
is of the greatest importance because of the severe 
practical constraints imposed on the experimental 
conditions. These constraints include the dose or 
energy of the signal and the signal duration. Moreover, 
in clinical practice usually only the central 
compartment (blood vascular system) is accessible 
both for excitation and for measurement. This paper, 
therefore, focuses on SISO (Single Input Single 
Output) models. 

The achievable accuracy of the parameter estimates 
is given by the Cramer-Rao theorem [3]. The theorem 
claims that the lower bound of the estimate covariance 
matrix [ ]�cov

k kn n×
p  is equal to the inverse of the Fisher 

information matrix 
k kn n×M  

 
 [ ] ( ) ( ) 1� � �cov TE −⎡ ⎤= − − ≥⎣ ⎦p p p p p M , (1) 

 
where 1�

kn ×p  – parameter estimates vector and 1kn ×p  – 

true parameter values vector, kn  – number of model 
parameters. 

The elements of the Fisher information matrix 
M are described by [4] 

 

 
( ) ( )

0

1 fT

ij
i j

y t y t
m dt

R p p

⎡ ⎤∂ ∂
⎡ ⎤= = ⎢ ⎥⎣ ⎦ ∂ ∂⎢ ⎥⎣ ⎦

∫M , , 1,..., ki j n= , (2) 

 
where ( ) / iy t p∂ ∂  – sensitivity of the output y  with 
respect to the model parameter ip , fT  – observation 
interval. Measurement error is assumed to be an 
uncorrelated, Gaussian, zero mean with a constant 
variance 2 Rσ = , i.e. ( )0,G R . 

A result of the Cramer-Rao theorem is that the 
minimal covariance of parameter estimates can be 
achieved by maximising the Fisher information matrix. 
The optimality criterion is expressed as a scalar function 
( )Φ M  of the Fisher information matrix. In this paper 

the sensitivity criterion ( )Φ M , in the form of the trace 
of the Fisher information matrix, is adopted [4] 

 

 ( ) ( ) 2

1 10

1trace
fk k

Tn n

ii
i i i

y t
m dt

R p= =

⎡ ⎤∂⎛ ⎞
⎢ ⎥Φ = = = ⎜ ⎟

∂⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑∫M M . (3) 

 
The main diagonal elements of the Fisher 

information matrix are the squares of the output 
sensitivity with respect to each parameter. Thus the 
chosen optimality criterion ensures the maximum 
sensitivity of the output with respect to the estimated 
parameters. Two optimal input design (OID) problems 
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were solved: the OID problem with constraint imposed 
on the dose D  of the input signal and the OID 
problem with constraint imposed on the energy E  of 
the input signal 

 

 ( )
0

uT

D u t dt= ∫ , (4) 

 

 ( )2

0

uT

E u t dt= ∫ , (5) 

 
where uT  denotes the duration of the input signal u . 

The objective function (3) and the constraints (4), 
(5) are non-linear, so both OID problems are non-
linear optimisation problems with constraint. The OID 
problems were solved using Kuhn-Tucker necessary 
conditions [5]. The conditions are both necessary and 
sufficient conditions of the convex optimisation 
problem.  
 
Equidose and equienergy inputs 
 

The constraints (4) and (5) define two classes of 
admissible inputs, the equidose and equienergy class, 
respectively. The solution depends heavily on the 
constraint imposed on the input signal [4]. In 
pharmacokinetic studies the dose of the input signal is 
limited by medical considerations. Hence the 
equienergy class of admissible inputs is very often 
adopted.  

Nevertheless, the constraint imposed on the energy 
of the input signal, which is widely used in control 
engineering, is applied in pharmacokinetic and 
metabolic studies as well [4], [6], [7]. In 
pharmacokinetics, the energy constraint is interpreted 
as limiting the rate of drug administration. The reason 
for adopting the energy constraint is to avoid rate-
dependent side-effects, which occur for many 
medicines. In such cases, the medicines cannot be 
administered to the patient in the form of an injection 
or fast infusion. The medicines, whose administration 
rates have to be limited, belong to various groups, 
including cardiac medicines (lidocaine and nitro-
glycerine), antibiotics (clindamicin, vankomycin and 
tetracycline) and antineoplastic medicines [8]. 

Let us consider the linear, continuous time, SISO 
system with Gaussian measurement errors ( )0,G R . 
The theorem holds [9]: “Among non-negative inputs 
of an equidose class the impulse provides the 
minimum Cramer-Rao lower bound of the parameter 
estimates”. Thus the equidose inputs are in form of the 
impulse input i.e. they have to be administered as an 
injection or short infusion. However, as stated above, 
the administration rate of some medicines has to be 
low because of the rate-dependent toxic side-effects. 
For these medicines, therefore, the equidose class of 
admissible inputs cannot be adopted. Thus the 

equienergy admissible inputs have to be considered 
instead of the equidose inputs.  

The desired dose D  of the energy-constrained input 
can be calculated on the base of the input time course 
( )u t  and its duration uT . Better accuracy of parameter 

estimates is achieved for inputs of longer duration uT . 
On the other hand, shorter uT  is less strenuous for the 
patient. In practice, the chosen input duration is usually 
a compromise between larger uT , which is desirable for 
identification purposes, and smaller uT , which is more 
sparing for the patient. 

 
Input optimisation and parameter estimation 
 

The continuous n -compartmental SISO model is 
described by the following differential equations [10] 

 

 
( ) ( ) ( ) ( )

d t
t u t

dt
= ⋅ + ⋅

x
A p x B , (6) 

 
 ( ) ( ) ( ) ( ) ( )y t f t v t t v t= + = ⋅ +C x , (7) 
 
where ( ) ( ) ( ) ( )1 2, ,...,

T
nt x t x t x t= ⎡ ⎤⎣ ⎦x  is a state vector, 

( )u t , ( )y t , ( )f t , ( )v t  are the input, measured 
output, model output and measurement error, 
respectively. ( )n n×

A p , 1n×B , 1 n×C  are the state, input 
and output matrix, respectively. The state ix , 

1, 2,...,i n= , of the pharmacokinetic model denotes 
concentration (mass) of the substance in the i -th 
compartment. The parameter vector 

1 2, ,...,
k

T

np p p⎡ ⎤= ⎣ ⎦p  contains the rate constants ijk  and 

the elimination constants 0ik , , 1, 2,...,i j n= . The rate 
constant ijk  describes the flow of the substance from the 
j -th to the i -th compartment. The elimination constant 

0ik  describes the elimination of the substance from the 
i -th compartment to the environment. 

The equidose optimal inputs were designed for one 
and two-compartmental models of gonadotrophin 
distribution, whereas the equienergy optimal inputs 
were designed for one and two-compartmental models 
of tetracycline distribution. Rapid injection of 
tetracycline causes serious cardiovascular side-effects 
and thus its administration rate has to be limited [11]. 
The models are presented in Figure 1. 

The initial parameter vectors [ ]
1 01init k=p  and 

[ ]
2 01 12 21, ,init k k k=p  of one and two-compartmental 

models of gonadotrophin and tetracycline distribution 
were calculated using the least-square method on the 
basis of the measurements collected during the non-
optimal intuitive experiments. 
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Figure 1: The one a) and two-compartmental b) model 
of gonadotrophin and tetracycline distribution. 
 

The following parameter values were obtained: 
-1

01 0.0266 mink =  for the one-compartmental model 
and 1

01 0.0287 mink −= , 1
12 0.4270 mink −= , 

1
21 0.1190 mink −=  for the two-compartmental model 

of gonadotrophin distribution [12]. 
The parameter value obtained for the one- 

compartmental model of tetracycline distribution was 
1

01 0.1079k h−= , while for the two-compartmental 
model of tetracycline distribution the following 
parameter values were obtained: 1

01 0.0913k h−= , 
1

12 0.2530k h−= , 1
21 0.0756k h−=  [13]. 

In the equidose case the optimal input was 
designed to ensure the best accuracy of the only 
parameter 01k  of the one-compartmental model of 
gonadotrophin distribution. Additionally, the optimal 
input was designed to ensure the best accuracy of the 
three parameters 01k , 12k  and 21k  of the two-
compartmental model of gonadotrophin distribution. 
Likewise, two optimal inputs were designed, which 
ensured the best accuracy of the parameters of the one 
and two-compartmental models of tetracycline 
distribution.  

The optimal inputs were designed on the basis of 
the non-optimal initial parameter vectors initp  using 
Matlab’s fmincon procedure. The fmincon procedure 
adopts Kuhn-Tucker necessary conditions to solve a 
non-linear programming problem with constraint.  

In the equidose case the duration of the optimal 
inputs is very short as the inputs are in the form of a 
short infusion. The model’s output ( ),opt initf u p  to the 

optimal input optu  was simulated on the observation 

interval 
1

0, fT⎡ ⎤⎣ ⎦ . The observation interval of 

1
30 minfT = is relatively long when compared with the 

input duration. 
In the equienergy case the input duration is equal to 

0.5uT h= . The accuracy of the parameter 12k  of the 
two-compartmental model of tetracycline distribution 
is very poor, as the sensitivity ( ) 12/optf u k∂ ∂  is smaller 

than the corresponding sensitivities of parameters 01k  
and 21k  (see Figure 2). In order to improve the 
accuracy of the parameter estimates, the four different 
observation intervals were considered 

2
1,1.5, 2, 2.5fT h= , as the information content in the 

interval 
2

,u fT T⎡ ⎤⎣ ⎦  is very rich [4]. 

 
 
Figure 2: The sensitivity of the output of the two-
compartmental model of tetracycline distribution with 
respect to parameters 01k , 12k  and 21k . 
 

In the equidose case, the measurements 

( ), initmeas opty u p  were simulated by adding the Gaussian 

noise ( )1 10,v G R∈  to the model’s output ( ),opt reesf u p , 
while in the equienergy case the measurements were 
obtained by adding the Gaussian noise ( )2 20,v G R∈  to 

the model’s output ( ),opt reesf u p . The variances 

1 0.334R =  and 2 0.01R =  are equal to the variances 
obtained in the respective real intuitive experiments 
[12], [13].  

The parameters of one and two-compartmental 
models, as presented in Figure 1, were calculated using 
prediction-error method. The prediction-error method 
coincides with the least square/maximum likelihood 
method for equally distributed Gaussian measurement 
errors ( )0,G R  Error! Reference source not found.. 
The calculations were performed using Matlab’s pem 
procedure. 
 
Results 
 

The output ( ),opt reesf u p  of the one-compartmental 
model of gonadotrophin distribution, described by the 
re-estimated parameter vector reesp , and the simulated 
measurements measy  are shown in Figure 3. The output 
of the two-compartmental model of gonadotrophin 
distribution and the measurements are presented in 
Figure 4. 

The parameter estimates of the one and two-
compartmental models of gonadotrophin distribution, 
their variances and coefficients of variation %CV  are 
presented in Table 1 and Table 2, respectively. The 
results presented in Tables 1 and 2 were obtained for the 
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optimal input optu  and compared to the results 
obtained for the non-optimal step input stepu  of 
duration 30minstepT = . 

 
Figure 3: The output of the re-estimated one-
compartmental model of gonadotrophin distribution 
( ),opt reesf u p  and simulated measurements measy . 

 
Figure 4: The output of the re-estimated two-
compartmental model of gonadotrophin distribution 
( ),opt reesf u p  and simulated measurements measy . 

The parameter variances were calculated as the 
Cramer-Rao lower bound (see (1)) 
 

 ( ) ( )
12

1

1var
N

rees k
ij

krees ij

f t
k

R k

−

=

⎡ ⎤⎛ ⎞∂⎢ ⎥= ⎜ ⎟⎜ ⎟∂⎢ ⎥⎝ ⎠⎣ ⎦
∑ , (8) 

 

 ( ) ( )( )2

1

1 N

rees meas k rees k
k

R y t f t
N =

= −∑ , (9) 

 
where ( )rees reesf f= p , N  – number of measurements, 

reesR  – residual variance in the solution, whereas the 
coefficient of variation %CV  is defined as follows 
 

 
var

% 100%ij

ij init

k
CV

k
= ⋅ . (10) 

Table 1: The parameter estimates of the one-
compartmental model of gonadotrophin distribution, 
their variances and coefficients of variation. 
 
Input optu  stepu  

01k  0.0260 0.0256 
01var k ⋅10-7 2.83 14.24 
[ ]%CV  2.00  4.49 

 
Table 2: The parameter estimates of the two-
compartmental model of gonadotrophin distribution, 
their variances and coefficients of variation. 
 
Input optu  stepu  

01k  0.0278  0.0272 

01var k ⋅10-7 6.09  29.96 

[ ]%CV  2.72  6.03  

12k  0.4605 0.4760  

12var k ⋅10-4 7.79  25.63  

[ ]%CV  6.54  11.86  

21k  0.1109  0.1074  

21var k ⋅10-5 4.14  10.99  

[ ]%CV  5.41  8.81  

 
It follows from Table 1 and Table 2 that the 

variances and coefficients of variation %CV  obtained 
for the optimal input are smaller than those obtained for 
the non-optimal, step input, both for the one and two-
compartmental models of gonadotrophin distribution. 

The parameter estimates of the one and two-
compartmental models of tetracycline distribution, their 
variances and coefficients of variation %CV  are 
presented in Table 3 and Table 4, respectively. The 
results presented were obtained for the optimal input 

optu  and compared to the results obtained for the non-
optimal step input stepu  of duration 0.5stepT h= .  

 
Table 3: The parameter estimates of the one-
compartmental model of tetracycline distribution, their 
variances and coefficients of variation. 

 
Input optu  optu  optu  optu  stepu  

[ ]fT h  1.0 1.5 2.0 2.5 1.0 

01k  0.1079 0.1059 0.1115 0.1069 0.1065 

01var k ⋅10-4 2.42 0.61 0.26 0.14 3.65 

[ ]%CV  14.40 7.25 4.76 3.44 17.72 

 
Four observation intervals 

2
1.0,1.5, 2.0, 2.5fT h=  

were considered in order to improve the accuracy of the 
parameter estimates.  
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Table 4: The parameter estimates of the two-
compartmental model of tetracycline distribution, their 
variances and coefficients of variation. 
 
Input optu  optu  optu  optu  stepu  

optu  1.0 1.5 2.0 2.5 1.0 

01k  0.0913 0.0891 0.0949 0.0904 0.0899 

01var k ⋅10-4 2.59 0.68 0.30 0.16 3.89 

[ ]%CV  17.62 9.02 6.02 4.40 21.59 

12k  0.3493 0.2675 0.1638 0.2941 0.5399 

12var k ⋅10-2 45.18 5.32 1.18 0.60 110.60 

[ ]%CV  265.64 91.17 42.84 30.59 415.64 

21k  0.0756 0.0727 0.0797 0.0749 0.0741 

21var k ⋅10-4 3.04 0.87 0.43 0.25 4.48 
%CV  23.08 12.37 8.66 6.64 28.01 

 
When the observation interval fT  of the optimal 

and non-optimal input is the same, the obtained 
variances and coefficients of variation %CV  of all 
parameters are smaller for the optimal input. It follows 
from both Table 3 and Table 4 that the accuracy of the 
parameter estimates improves as the observation 
interval fT  increases. 

 
Standard vs. individual therapy 
 

In standard tetracycline therapy at first the 
saturation dose 500satD mg=  is routinely 
administered to the patient. Doses 250D mg=  are 
then administered with a repetition period of 8repT h=  
[8]. However, with the standard therapy the 
concentration of tetracycline in the plasma of the 
patient under examination reaches the therapeutic 
level, equal to 4 /g mlµ , only in short time intervals 
(see Figure 5), which is insufficient to achieve the 
therapeutic effect.  

In the individual therapy the dose 375indD mg=  
has to be administered to the patient with an individual 
repetition period of 6rep indT h= . The individual 
therapy ensures that the plasma concentration of 
tetracycline exceeds the therapeutic level. This proves 
the importance of the individually designed therapy. 
 
Conclusions 
 

The results presented in Tables 1÷4 show that the 
best accuracy of the parameter estimates, of both the 
one and two-compartmental models, is achieved for 
optimal inputs (both equidose and equienergy optimal 
inputs). The accuracy of the parameter estimates is 
described by the parameter variances and the 
coefficients of variation. 

 
Figure 5: The concenntration of tetracycline in the 
plasma of the examined patient: individual therapy 
(solid line) and standar therapy (dash-dotted line). 

 
It follows from Table 3 and Table 4 that the longer 

the observation interval is, the better the parameter 
accuracy achieved. Still, a longer observation interval is 
more strenuous for the patient. It is, therefore, desirable 
to find the length of the observation period which 
ensures an acceptable accuracy of the parameter 
estimates but which is, on the other hand, sparing for the 
patient. 

The designed equidose optimal inputs take the form 
of bolus of very short duration (such as injections). This 
result is very convenient from the practical point of 
view, as injections are commonly used in clinical 
practice. However, the dose-constrained optimal inputs 
are not admissible for medicines which show rate-
dependent side-effects. For these medicines the energy-
constrained class of admissible inputs has to be 
considered. The shapes of the equienergy optimal inputs 
are not conventional ones and the inputs have to be 
administered using special volumetric pumps. These 
pumps are not commonly used nowadays, yet the rapid 
development of computer controlled volumetric pumps 
suggests the possibility of adopting equienergy optimal 
inputs for model parameter identification purposes in 
the future. 
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