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Abstract: Computational analysis of proteins can be 
used for structure prediction of newly identified 
protein sequences. In this way, valuable information 
related to their function can be derived. Hidden 
Markov Models (HMMs) have been largely applied 
for this task. However, due to their topology they 
suffer from lack of computational simplicity and the 
need for complex training algorithms. In this work, a 
Hidden Markov Model with a reduced state-space 
topology is proposed to serve as a protein 
classification tool. The model employs an efficient 
architecture and a low complexity training algorithm 
based on likelihood maximization. In addition, 
secondary structure information is introduced to the 
model to increase its performance. The proposed 
model was tested in two different tasks, i.e. class 
prediction and fold recognition. The dataset, used 
for the evaluation of the proposed methodology, 
comes from SCOP and PDB databases. The 
classification performance of our model was tested 
against the SAM approach, which is considered as a 
benchmark in sequence based protein classification. 
The proposed classifier performed better than SAM 
in the overall prediction accuracy. 
 
Introduction 
 

The large number of genome projects during the last 
years led to an exponential increase in the number of 
identified protein sequences. Nevertheless, for the 
majority of these sequences there is no information  
available concerning their function or their structure. 
Understanding the structure of these sequences is a way 
to define their function, as proteins with similar 
structure have in general similar function. A newly 
identified protein can be related with  proteins in 
annotated databases whose structure is known. In 
computational analysis of proteins this can be 
considered as a classification problem which can be 
divided in two tasks: fold recognition and class 
prediction.  
      Several machine learning methods have been 
proposed in the literature for these tasks. Genetic 
algorithms have been applied for fold recognition [1], 
as well as artificial neural networks [2] and support 

vector machines [3,4].  For the prediction of the 
structural class of a protein several methods have been 
also suggested. These methods are mostly based on the 
amino acid composition of the protein [5]. Various 
statistical approaches have been adopted to deal with 
that problem [5,6]. 
      Among the sequence-based approaches that use 
hidden Markov models (HMMs) Sequence Alignment 
and Modelling (SAM) method is considered as the most 
prominent and more representative [7,8]. Furthermore, 
other surveys have shown that secondary structure 
information can be incorporated in the HMM and 
increase the fold recognition performance [9]. Recently 
the same approach was extended with the additional 
application of different alphabets  for backbone 
geometry [10].  However, the main disadvantage of 
HMMs is the employment of large model architectures 
which demand large datasets and high computational 
effort for training. As a consequence, in cases where the 
available datasets are inadequate, e.g. small classes or 
folds, their performance deteriorates.  
      In this work, a HMM with a limited number of 
states is proposed to serve as a classification tool for 
structure prediction. Due to its simplified architecture 
the proposed model is easy to be trained. The model's  
architecture includes a small number of states while a 
low complexity training algorithm is used. Secondary 
structure information is introduced to the model to 
increase its performance. The model addresses  the 
problem of multi-class classification of sequences, 
meaning that the method employed classifies a query 
sequence of unknown structural category in one of the 
candidate categories, classes or folds. The proposed 
model is used for two tasks: class prediction and fold 
recognition.  
      Folds from two different major structural classes 
were used. Class prediction is employed at the first 
stage. The proteins correctly classified are assigned to 
the folds of the specific class at the second stage. A 
Bayesian multi-class classification approach is used for 
the classification of proteins in the appropriate category 
of each stage. The obtained results are equivalent or 
even better than other similar techniques, whereas the 
computational load is significantly smaller. 
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 Materials and Methods 
 
      HMMs are widely used in modelling families of 
biological sequences. Each HMM consists of a set of 
states S and a set of possible transitions T between them. 
Each state stochastically emits a signal and then the 
procedure is transmitted to another state with a 
probability depending on the previous state. The 
procedure continues until the total of each sequence is 
emitted. There is also a beginning state where the 
process starts and a set of transition probabilities from 
the beginning of each possible state. That set of 
probabilities sums to unity and so does the set of 
emissions of possible signals in each state and the set of 
transitions from each state. The observer does not know 
which state produced each specific signal, because that 
state is hidden from him. This is the first main 
characteristic of a HMM, which differentiates it from 
other stochastic models. The second is the Markov 
property, which means that given the value of the 
previous state St-1 the current state St and all future states 
are independent of all the states prior to t-1 [11]. 
      A HMM is trained using a set of sequences called 
training set. The aim of the learning procedure is to 
maximize the likelihood of the model given the training 
data.  
      The current methods which employ HMMs for 
protein classification adopt the above approach but they 
have some limitations. First they use a very big number 
of states, as their topology corresponds to a multiple 
sequence alignment among sequences and the length of 
the model is proportional to the length of the alignment. 
That leads to a huge number of parameters to be 
calculated. The next problem is the training algorithm 
adopted (e.g. Baum – Welch) which is very complex 
and demands a vast amount of calculations in order to 
locate a local maximum of the likelihood [12].  
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Figure 1: Topology of the HMM with a limited number 
of states (H, B,…, S are the letters of the DSSP  
alphabet). 
   

Model description 
The proposed HMM, whose topology is shown in 

Fig. 1, can overcome the above mentioned limitations. 
The key for that is the additional use of secondary 
structure information in such a way that the states of the 
model will depict the possible different secondary states 
and not different positions in a multiple alignment. The 
correct classification among different structural groups 
demands the use of the secondary structure information 
and not only that of the primary structure. It has been 
proved [9] that it is more effective to use such 
information which is confirmed and published in 
databases like the Protein Data Bank (PDB) [13], than 
to use predicted secondary structure which inevitably 
contains errors in the sequence of the residues. 

We use secondary structure sequences taken from 
the PDB, which are used in the context of our HMM as 
hidden state sequences. This offers the advantage of 
employing a HMM with a small number of states, which 
is equal to the number of the different letters in the 
Definition of Secondary Structure of Proteins (DSSP) 
alphabet [14] representing the possible secondary 
structure formations where each amino acid residue is 
found. The set of letters in the DSSP alphabet is 
{H,B,E,G,I,T,S}. Moreover, the state sequence of each 
primary sequence produced by the model is known, thus 
this fact enables us to use a low complexity training 
algorithm based on likelihood maximization and avoid 
complicated learning schemes. 

There are seven different hidden states in the model 
corresponding to the underlying secondary structure. In 
the training set, there is one to one correspondence 
between the amino acid and the secondary structure 
residues. It should be noted that in the DSSP method an 
eighth state is also determined, which indicates 
unknown structure, but it is not taken into consideration 
in our method, so the amino acid residues with unknown 
structure are skipped during the modelling process. The 
states of the model are fully connected, that is all 
possible transitions between them are allowed. In each 
state a distribution over all possible amino acid residues 
is found. There are 21 possible residues which are the 
variables in each distribution, the 20 different amino 
acids and one more residue indicating amino acids of 
unknown origin. So the total number of the model 
parameters is 7x21 for the possible emissions, 7x7 for 
the possible transitions between states and 1x7 for the 
transitions from the beginning. The sum of all this is 
203 parameters, which is much less than the number of 
parameters which is needed to be calculated by other 
current HMM methods for protein modelling.  
      The emission and transition parameters of the model 
are calculated in a single step with the use of maximum 
likelihood estimators. If akl is the transition probability 
from state k to another state l and ek(b) the emission 
probability of the residue b in the state k, then the 
estimators are given by the following equations: 
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      Where '
l  all the states where the procedure can go 

after state k and 'b  all the symbols that can be emitted 
from state k. These are the estimation equations in the 
HMMs when the state sequences are known [11]. Akl is 
the number of times that the transition from k to l is 
used and Ek(b) is the number of times the emission of b 
from k is used in the training test of sequences. 
Nevertheless, maximum likelihood estimators are 
vulnerable to overfitting when there is insufficient data. 
Whenever there is a state k that is never used in the set 
of example sequences, then the estimation equations 
cannot be defined for that state, because both the 
numerator and the denominator will have zero value. In 
order to avoid such problems it is preferable to add 
predetermined pseudocounts to the Akl and Ek(b) before 
using equations (1) and (2).  Their values are given as: 
 
Akl = number of transitions k to l in training data + rkl  (3) 
 
 
Ek(b) = number of emissions of b from k + rk(b) .       (4) 
 
      The pseudocounts rkl and rk(b) should reflect our 
prior biases about the probability values. In our case 
there is actually not prior belief, which means that the 
value of each pseudocount equals unity. It is as the prior 
distribution of amino acids in each emission state and 
the prior distribution of transitions from each state has 
been the uniform distribution. So here the  pseudocounts 
are used only for avoiding overfitting and do not   
incorporate any prior knowledge. 
 
Implementation 

The proposed HMM uses the posterior probability 
scores. These scores are logarithmic forms of the 
probability of the sequence, given the model. According 
to the Bayes theorem, a test sequence is classified to 
that group whose model gives the maximum probability 
compared with the probabilities produced from all the 
other models of the candidate groups. Bayes theorem 
claims that the probability of a particular model given a 
sequence is proportional to the probability of the 
sequence, given the model. The later quantity is the 
likelihood of the sequence and can be calculated since 
the parameters of the model are known after the 
learning process. 

The posterior probabilities are calculated with the 
use of the forward algorithm. The forward algorithm 

gives the probability that a sequence has been produced 
by a HMM by adding the probability of all possible 
paths of the sequence through the model. It is necessary 
to use logarithms in order to avoid underflow problems 
appearing when a very long product of probabilities has 
to be computed. Then a Bayesian classification table is 
constructed for the classification of the test sequences in 
the appropriate category, class or fold.   
      The data available is separated to make the training 
and test sets. The test sets contain only primary 
sequences, as all information concerning the structure of 
a protein is considered unknown. Log–likelihood scores 
are adopted for evaluating the proposed HMM. These 
scores will be calculated for each class model in the 
class prediction case and for each fold model in the fold 
recognition case. The likelihood score for a sequence 
against a model is divided with the score of that 
sequence against the so called null model. The null 
model assumes that the amino acid symbols are 
independent at each position, and assigns fixed emission 
probabilities based on the uniform distribution over the 
possible amino acids. The criterion for selecting the 
model which best classifies a particular protein is to 
choose the model with the highest posterior probability, 
and posterior probabilities correspond to the log-
likelihood scores against the null model. 
      A group of protein sequences, both primary and 
secondary, is taken from the PDB. The members of this 
group correspond to specific classes or folds of the 
SCOP database [15]. A part of these sequences forms 
the training set used in the classification problem. The 
test set used for each case consists of the rest of the 
primary sequences and their class or fold is considered 
unknown. Actually, the structural categories of all 
sequences are known from the SCOP database. So we 
are able to evaluate the effectiveness of their 
classification in the correct group after the experiments.  
      The PDB sequence files include no organization of 
their data in structural groups, so that kind of 
information should be found in the SCOP database. 
There is a hierarchical categorization of proteins with 
known structure in the SCOP database, where class is 
the highest level and fold is the level that follows. The 
SCOP database contains files with categorization of the 
primary sequences, indicating the structural class and 
fold where they belong. The data from both databases 
should be combined, so that SCOP will provide the 
correct categorization and PDB will provide the relevant 
sequences, both primary and secondary. That happens 
for each class and fold to be tested in the classification 
tasks. The sequence identifiers come from the ASTRAL 
SCOP 1.67 dataset, where no proteins with more than 
95% similarity are contained. The dataset used in our 
experiments is shown in Table 1. The most populated 
SCOP folds of classes A and B, most specifically those 
who have at least 50 members, are used to derive the 
training and test data for the experiments.       

As far as the prediction of classes is concerned, two 
hidden Markov models with a limited number of states 
were trained. These models correspond to the SCOP 
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 classes A and B, which are two of the most populated 
ones. The training set for each class is the sum of the 
training sets of the folds of each class and the same 
happens with the test set. Then the members of the class 
test sets are scored against the models of each class and 
the test sequences are assigned to that class having the 
maximum probability. The class prediction task is the 
pre-stage of the fold recognition task and the Table 2  
summarizes the results. The two stages of classification 
are shown in Fig. 2. 

 
Table 1: The dataset used (2 SCOP classes and the 12 

SCOP folds).  
 

Fold 
index 

Number of 
sequences in the 

training set 

Number of 
sequences  in in the 

test set 

A 287 282 
a1 48 47 
a3 33 32 
a4 100 99 

a24 29 28 
a39 46 46 

a118 31 30 
B 743 738 
b1 445 444 
b6 33 33 

b29 41 40 
b34 46 46 
b40 62 61 
b47 41 40 
b60 27 26 
b121 48 48 

 
The fold recognition task includes the training of 12 

hidden Markov models with limited number of states of 
the most populated SCOP folds. The final test sets used 
in this task consist of those test sequences that can be 

classified in the correct class when compared with the 
two class models. So the initial test sets for fold 
recognition are first filtered through the class models for 
the limited HMM.  Then the remaining test sequences 
are scored against all fold models of the specific class 
and the prediction accuracy is calculated for all folds. 
The prediction accuracy is the number of test proteins 
uniquely recognized as belonging to a specific fold 
divided by the total numbers of test proteins belonging 
to that fold. The denominator corresponds to the total 
number of the proteins belonging to the initial test of 
each fold and not to the number of those which  remaine 
after the filtering of the first stage. Finally, the total 
number of protein assigned correctly from all folds of a 
class divided by the total number of test proteins 
belonging to the class provides the class prediction 
accuracy. 
 
Results 
 

The HMM with a limited number of states is 
compared against SAM [7] which is considered the 
most effective current method that employs HMMs for 
protein classification [16]. In the case of the SAM 
models, which are compared with our models, the 
posterior probabilities correspond to the negative log– 
likelihood scores of each sequence. So when the 
negative log - likelihood scores decrease, the posterior 
probabilities increase and an unknown protein must be 
assigned to that model which gives the lowest negative 
log – likelihood score for its primary sequence. 
Nevertheless, the decision taken for the classification of 
a sequence to a structural group is based upon ranked 
scores, because the comparison of log-likelihood scores 
of a sequence against different models is not trustworthy 
as those scores depend on model length [17]. It should 
be noted that model length varies in SAM and depends 
on the training set, unlike our model. 
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Figure 2: In the first stage of the classification procedure the appropriate class is identified while in the second stage 
the correct fold is determined. 
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 The same training and test sets were used for both 
methods and the results are shown in Table 2. As it can 
be seen, the HMM with limited number of states 
outperforms SAM in the overall prediction accuracy for 
the folds of classes A and B.  
 
Table 2: Comparison of the proposed  model   accuracy 

against SAM. 
 

Fold 
Index 

Proposed HMM 
prediction accuracy 

SAM prediction 
accuracy 

a1 43/47 91.5% 42/47 89.4% 
a3 22/34 64.7% 30/34 88.2% 
a4 47/88 53.4% 46/88 52.3% 

a39 32/46 69.6% 38/46 82.6% 
a118 19/31 61.3% 15/31 48.4% 

Class A 163/246 66.3% 171/246 69.5% 
b1 264/400 66% 152/400 38% 
b6 18/39 46.2% 33/39 84.6% 

b10 50/53 94.3% 37/53 69.8% 
b29 26/37 70.3% 19/37 51.4% 
b34 5/43 11.6% 24/43 55.8% 
b40 6/62 9.7% 24/62 38.7% 
b47 21/37 56.8% 29/37 78.4% 

Class B 390/671 58.1% 318/671 47.4% 
Overall 553/917 60.3% 489/917 53.3% 

      
Discussion 
 
      The HMM with a limited number of states that has 
been presented here is based on the concept of training 
with both primary and secondary sequence for class and 
fold modeling. Each hidden state of the model 
corresponds to a possible secondary state an amino acid 
can adopt, so the number of states is equal to the 
number of all possible versions of secondary structure. 
In each state a probability distribution over all possible 
amino acids is found. The state sequence is known 
during training, as the secondary sequences of the 
correspondent primary ones are given, so the learning 
algorithm is very fast and based on the calculation of 
maximum likelihood estimators of all parameters in a 
single step. After  training, the probability score of 
unknown sequences against the created models are 
calculated with the use of the forward algorithm and 
Bayesian classification tables are constructed for 
assigning the test sequences to that category, either class 
or fold, whose model gave the maximum probability 
score. In all cases, only the primary sequences of 
proteins are needed in the test set. The classification 
takes place in two stages. In the first stage the test 
sequences are assigned to the appropriate class. In the 
second stage those sequences which are correctly 
assigned in the previous step are classified in the 
appropriate fold and the results are validated.  
      The classification performance of the HMM with a 
limited number of states is tested by comparing it to a 
SAM model trained with the same datasets. This model 
is linear and its length is equal to that of the multiple 

alignment which the SAM method gives for the specific 
test. Experiments indicate that the HMM with limited 
number of states is more accurate than SAM in the 
overall classification rate. 
      The proposed HMM implementation for classifying 
proteins in the appropriate class or fold is an approach 
which avoids iterative procedures demanding huge 
computational effort in training. Moreover, it is the only 
method, among those using secondary sequence 
information for fold recognition, where the knowledge 
of the secondary sequence of the target protein is not 
needed during the validation process, due to the nature 
of model’s structure. It provides equivalent or even 
better results than SAM implementation which demands 
extremely higher computational complexity in model’s 
training and larger number of states. 
      Additional structural features could be incorporated 
in the future to improve the performance, like residue 
solvent accessibility, for example. These features will 
add more states in the model without significant 
increase in the complexity, thus the low complexity 
training algorithm will be again appropriate for training. 
The ability of classifying proteins in the correct fold can 
be improved in that way with a small increase at 
computational cost. 
           
Conclusions 
 

A HMM with a limited number of states was 
implemented to address the problem of modelling 
structural categories. The proposed HMM provides 
equivalent or even better results than other methods 
(SAM). It demands extremely lower computational 
complexity in model’s training and employs much 
smaller model architecture. Moreover, it is the only 
approach where the knowledge of the secondary 
sequence of the target protein is not needed during the 
testing phase. As a consequence, there is no need to 
predict the secondary sequence of the protein which is 
considered unknown.  
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