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Abstract: The stress-strain curve of an industrial 
composite such as a fiber-reinforced plastic falls 
between those of fibers and plastic matrix. On the 
other hand, despite the fact that the biological soft 
tissue is composed of collagen fascicles in a matrix 
whose Young's modulus is almost negligible, the 
Young's modulus of the tissue is higher than the 
fascicles. To insight into the mechanism of such 
inverse characteristics, we developed a mathematical 
model of a ligament, by taking into account a 
fascicle’s kinematic non-uniformity along its 
longitudinal direction and mechanical interaction 
between fascicles or a fascicle and matrix. 
Simulations results demonstrated the inverse 
characteristics and also helped to understand the 
mechanism of ligament's failure. 
 
Introduction 
 

The biological soft tissues such as ligaments and 
tendons have a hierarchial structure composed of 
collagen fibrils, fibers, fascicles and fascicle bundles. 
To gain insight into the mechanical properties of the 
tissues, it may be helpful to elucidate the basic 
relationships between the microstructures and their 
mechanical properties in the tissues. In this study, 
tensile tests were performed on Bone-Ligament-Bone 
(BLB) units and individual collagen fascicles all from 
swine Anterior Cruciate Ligaments (ACL) [1]. The 
relationships between the structures and the mechanical 
properties for the two kinds of test subject were 
investigated. The results showed that the BLB's stiffness 
was higher than the fascicles; Hereafter we will use the 
word ‘stiffness’ as the same meaning as a tangent in the 
stress-strain curve. The same results were reported for a 
rabitt patellar tendon [2]. However, these results are 
contrary to the popular notion that because the tissue is 
composed of collagen fascicles in a matrix whose 
stiffness is almost negligible, the tissue should not be 
stiffer than the fascicles that compose it. In fact, the 
stiffness of an industrial composite such as a fiber-
reinforced plastic falls between those of fibers and 
plastic matrix [3]. 

So far, the mechanical properties of both the upper- 
and lower-most levels of the tissue’s higharchy such as 
the colective tissue and the pure fibrils have been fully 
investigated respectively through the measurement 
experiments [4], [5] and the model analyses [6], [7]. Yet 
the mechanical interrelationship between the above two 

levels is still unclear and the mechanical properties 
of the submicro-level structure such as the fascicles 
have not been fully investigated. 

To insight into the mechanism of the above-
mentioned inverse characteristic in the biological soft 
tissues, it is crucial not only to measure the 
mechanical properties in each individual 
level/element but also to investigate the mechanical 
interactions among the levels/elements. This 
approach may also be helpful to undesrstand the 
mechanism of the tissue’s failure. Thus, we 
performed a mathematical model analysis in which 
we took into account the affects of interactions 
between the fascicle-fascicle and fascicle-matrix on the 
mechanical response of the collective tissue. 

 
Protocol 
 

Figure 1 (a) and (b) show the stress-strain curves 
of fiber reinforced matrces in the case of respectively 
the industrial and the biological materials. In Fig.1 
(a), a tangent modulus of the stress-strain curve of 
complex falls between those of fiber and matrix. On 
the other hand in Fig.1 (b), a tangent modulus of the 
stress-strain curve of a Bone-ACL-Bone complex 
exceeds that of fibers, despite the fact that the ACL 
is composed of collagen fascicles in a matrix whose 
stiffness is almost negligible. Possible reasons to 
explain this are reported to be as mechano-chemical 
interactions between fascicles and/or between 
fascicles and matrix [2], or contributions from the 
membranous septa that combines fascicles [1]. 
However a direct evidence is lacking. 

Elements in biological materials are not uniform 
in size/shape as well as in mechanical properties as 
compared to those in industorial materials. During 
the tensile tests on the fascicles, we found that the 
specimen did not elongate uniformly along its 
longitudinal direction [1]. Figure 2 and Table 1 show 
a typical example of the results obtained from our 
experiments subject to the fascicles of the swine 
ACL. According to Table 1, the strain value of the 
total length of the specimen is pretty close to that of 
segment ③ whose strain value is much larger than 
those of any other segments. If such is a case, then 
the stiffness, i.e. stress par unit strain of that 
specimen would be determined mainly by the 
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 stiffness on the weakest segment no matter how stiff the 
rest segments are. 

 

 
(a) 

 

 
(b) 

 
Fig.1 Stress-strain curves of fiber reinforced matrices. 
(a) fiber reinforced plastic for the inductorial material, 
(b) Anterior Cruciate Ligament from a swine hinder 
knee joint. 

 
 

 
(a) 

 

 
(b) 

 
Fig.2 Photographs of a fascicle specimen before and 
after tensioned indicating non-uniform elongations. 
(a) untensioned state, (b) tensioned state 
 
 
Table 1 Strains along the longitudinal direction of a 
fascicle specimen. 

 
 
It has been thought that the contributions of the 

matrix or the fascicle-fascicle and fascicle-matrix 
interactions to the mechanical properties of the tissue 
are small. But these interactions could play a significant 
role in surpressing an excessive strain on the weakest 
segment, thereby resulting in an increase in stiffness of 
the tissue. As we thought this colud explaine the 
mechanism of the above-mentioned inverse 
characteristics in the biological soft tissues, we 
developed two kinds of mathematical models of 
ligament; one was a model of ligament as a linear 

springs’ aggregation and the other was a model of 
ligament as a hyper-elastic continuum. In both the 
models, we took into account a fascicle’s kinematic 
non-uniformity along its longitudinal direction and 
we fabricated a virtual spring which represented the 
effects of fascicle-fascicle and fascicle-matrix 
interactions on the ligament’s stiffness. Then 
simulations were performed to check if the inverse 
characteristics were reproduced. 

 
Mathematical Models of Ligament 
 
A model of ligament as a linear springs’ aggregation 

Figure 3 shows a simple model of the ligament in 
which two strings represent fascicles and are 
arranged in parallel, each string is composed of three 
springs in a row. In each string, one of the three 
springs is set with a lower spring coefficient than the 
other two springs to represent a fascicle’s kinematic 
non-uniformity. The mechanical interactions 
between fascicles or a fascicle and matrix is assumed 
to be reproduced by a force of a virtual spring, 
designated as a cross-link spring and whose spring 
constant, c is set further lower than that of the above-
mentioned weak spring. It is assumed that the cross-
link spring generates a force only in the string’s 
longitudinal direction in proportion to the difference 
between the longitudinal displacements of two nodes 
on two strings respectively. 

 

 
Fig.3 A linear springs’ aggregation model of the 
ligament. 

 
Now, we will extend the simple model shown in 

Fig.3 to a more general one by increasing the 
numbers of strings and springs, then we will 
introduce its kinematic equation. Symbols in Fig.3 
indicate as, 

suffces i and j: the string’s and the spring’s 
numbers respectively, 

kij: a spring constant of the j-th spring on the i-th 
string,  

xij: a longitudinal coordinate of the j-th node on the 
i-th string,  

uij: a longitudinal displacement of the j-th node on 
the i-th string,  

c: a spring constant of the cross-link spring,  
fi: a tensile force acting on the i-th string,  
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 F: summation of tensile forces acting on all the strings.  
 
A force equilibrium condition at each node is expressed 

by the following equation,  
fAu =                                        (1)  

where,  
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Also, the following relation hlds, 

Ff
n

i
i =∑

=1

                                                              (2) 

 
For the sake of simplicity, we will assume that along 

each string, the spring constant of only one spring is set 
lower than those of the rest springs. We will also assume 
that the weak spring is allocated at random respectively 
along each string. Then, we will replace the above-
mentioned strings with cylinders of section area A 
[mm2] and also we aill assume the cylinders are densely 
arranged so as to minimize clearance area among them. 
Figure 4 illustrates the arrangement of the fascicle 
cylinders and the distribution of weak portions (springs). 
 

 
 
Fig.4 Arrangement of the fascicle cylinders and the 
distribution of weak portions. 
 

Next, for both the weak and strong springs, we will 
change their spring constants according to their stretch 
so as to represent the toe, linear and failure phases seen 
in a stress-strain curve of the natural ligament. Figure 5 
represents a stress-strain curve of the ligament in a 
linearized form. In the figure, εcs and εcw correspond to 
the strains at which crimps of the fascicles unfold and εs 
and εw the strains at failure for the strong and the weak 

portions respectively. The spring constant of the toe 
region is set lower than that of the linear region. The 
spring constant of the failure region is set zero. 

 

 
Fig.5 Linearized representation of a stress-strain 
curve for the natural ligament. 
 

From Fig.5, the relationship between stress σ and 
strain ε is expressed by the following equation. 
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where suffices s and w show the values for the strong 
and the weak portions respectively.  

Since a weak spring elongates more easily than a 
strong spring, we will set the strain at which crims 
unfold and the strain at failue for the weak portion 
larger than those for the strong portion as, 

wscwcs εεεε << ,                      (4) 
 

When the ligament is untensioned, most of the 
fascicles are straight and arranged in parallel while 
some are not. Figure 6 (a) shows a microscopic 
photograph of a longitudinal section of the swine ACL 
and (b) shows its schematic representation. To 
incoorporate this cahracteristic into the model, we will 
assign the different initial lengthes to the different 
fascicle cylinders. 
 

   
                     (a)                                    (b) 
Fig.6 Fascicle arrangements on the longitudinal 
section of the swine ACL. 
(a) microscopic photograph (b) shematic 
representation 
 
 
A model of ligament as a hyprer-elastic continuum  

We create a 2D continuous model of the ligament 
under the conditions that the fascicle is made of non-
isotropic hyper-elastic material and the matrix is 
fabricated to be assumed Mooney-Rivlin material 
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 whose stiffness is much lower than that of the fascicle 
material. Figure 7 shows a simple model of ligament in 
which two strips corresponding to fascicles are arranged 
in parallel, each strip is composed of three segments. 
The matrix is also represented a narrow strip of three 
segments and it is sandwitched with the fascicle strips. 

 
Fig.7 A hyprer-elastic continuum model of ligament. 

 
First, a 2D constitutive equation for the fascicle is 

introduced as, 
 

DCe=σ&                        
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where, σ& is the velocity of Cauchy stress, Ce is the 
elasticity coefficient tensor and D is the deformation 
velocity tensor. Ex，Ey，νx，and νy are the Young’s 
modulus and the Poisson ratio for respectively x and y 
diretions. Γ is a mudulus of transverse elasticity. 

Next, we will introduce a constitutive equation for the 
matrix. A strain energy function for the Mooney-Rivlin 
material is given by,  

( ) ( ) ( )133 321 −+−+−= IhIIW βα                                 (6) 
where, α, β are the Mooney-Rivlin constants, h is 
hydrostatic pressure and I1， I2 and I3 are the invariants of 
right Cauchy-Green deformation tensor. 

The Kirchhoff stress tensor S is expressed with the 
strain energy function W and the Green strain tensor G as,  

G
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Then, the constitutive equation of matrix is simply 
given as, 

                                                                     (8) 
As a plane stress is considered here, the following 

relations hold, 
03332233113 ===== SSSSS                                   (9) 

 

Next, we will express the constitutive equations by 
incremental forms. Then for the fascicle, Eq.(5) is 
rerwitten as,  

DCeΔΔ =σ&                                 (10)   
and for the matrix, Eq.(8) is rewritten as,  

GCS mΔΔ =                                   (11)   
Finally, we will derive the stiffness equation for the 

collective ligament including the fascicles and the 
matrix by using the principal of virtual work, whose 
incremental form is given by, 

 
                                                                           (12) 

where, 
jiΔΠ is an increment of the nominal stress, 0t  

and 0tΔ  are the surface force and its increment 
respectively，σji is Cauchy stress. 

By representing the ligament’s shape by flat 
triangular elements and substitutig Eqs (10) and (11) 
into Eq.(12), we obtain the following stiffness equation,    

fuK =Δ                                                          (13)  
This completes the formulation of the problem. 
 

Simulations and Results 
 
The linear springs’ aggregation model 

In the simulation for the linear springs’ aggregation 
model, we set the number of strings (cylinders) as 50 
and each strings was made of 10 springs. The parameter 
values used in the simulation are shown in Table 2. 
 
Table 2 Parameter values used for the linear springs’ 
aggregation model. 

 
 

We set the ratio between the Young’s moduli in the 
toe and linear regions as q. Thus the Young’s moduli in 
the toe region for respectively strong and weak 
segments cwcs EE , were introduced as,  

wcw

scs

EqE

EqE

×=

×=

100

100                                                       (14) 

 
Simulations were performed under such 

conditions as our linear springs’ aggregation model 
was made of,  
(a) the springs of the same initial length, without the 

cross-link springs 
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 (b) the springs of the same initial length, with the cross-
link springs, 

(c) the springs of the various initial lengthes, with the 
cross-link springs. 

 
Condition (a) is vertually same as the case of a 

single spring. Conditions (b) and (c) correspond to a 
collective ligament composed of fascicles’ bundles. Still 
(c) was employed from the fact that for the natural 
ligament all the fascicles do not stretch nor shear the 
tensile force equally when the ligament is pulled. 

The simulation results are shown in Fig.8. In the figure, 
the tangents of stress-strain curves for conditions (b) and 
(c) with the cross-link springs are almost same with each 
other, and are steeper than that of condition (a) without the 
cross-link springs. We found that the stress-strain curve of 
condition (a) was identical to that of a single string. It 
should be noted that a phase of microstructure failure is 
clearly drawn for condition (c) in which the springs have 
various initial lengthes.  

  
Fig.8 Stress-strain courves for the various types of 
linear springs’ aggregation models (Legends (a), (b) and 
(c) are explained in the text). 

 
The hyper-elastic continuum model 

In the simulation for the hyper-elastic continuum model, 
ten strips representing fascicles were arranged in parallel, 
and nine narrow strips representing the matrix were 
sandwiched between them so as to represent a belt-shape 
ligament. Each of the fascicle and matrix strips was 
divided by 10 segments along its longitudinal direction; 
each segment was further devided into 4 triangular meshes  
for the FEM analysis. Alon each fascicle strip, one segment 
was set lower with its Young’s modulus than the rest nine 
segments. The parameter values used in the simulation are 
shown in Table 3. 
 
Table 3 Parameter values used for the hyper-elastic 
continuum model. 

 
 

Simulations were performed under such conditions 
as the model was made of,  

(a) weak segments were randomly arranged, without 
matrix, 

(b) weak segments were aligned side by side, with 
matrix, 

(c) weak segments were randomly arranged, with 
matrix. 

 
Condition (c) represented most likely the natural 

ligament, and conditions (a) and (b) were employed 
for comparison. 

The simulation results are shown in Fig.9 through 11. 
Figure 9 shows the stress-strain curves for the above-
mentioned three conditions (a) through (c). We found 
that when the weak segments were aligned side by side 
(condition (b)), the tangent of stress-strain curve 
became equivalent to those without matrix (condition 
(a)). In the case when the weak segments were 
randomly arranged and the matrix was incooprated 
(condition (c)), the tangent of stress-strain curve became 
higher than the other two conditions.  

 
Fig.9 Stress-strain courves for the various types of 
hyper-elastic continuum models (Legends (a), (b) 
and (c) are explained in the text. Same as Figs.10 and 
11). 

 

 
Fig.10 Deformed shapes under 30% stretch. 
 

 
Fig.11 Principal stress distribution maps under 30% 
stretch. 
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 Figure 10 and 11 show the deformed shapes and the 
principal stress distribution maps respectively when the 
model was stretched by 30%. Contribution of the matrix is 
seen in the deformed shapes of Fig.11 (b) and (c). It should 
be noted that the strong segment next to the weak segment 
exhibits high stress so that the weak segment is not 
excessively stretched as shown in Fig.11 (c). 

 
Discussion 
 
The linear springs’ aggregation model 

The simulation results of our linear springs’ 
aggregation model clearly demonstrated that the tangnt 
modulus of the stress-strain curve for the collective 
ligament became higher than that of the fascicles. It 
should be noted that during tensile test of a single 
fascicle, excessive elongation would be exerted at the 
weakest portion along the fascicle. Then we may 
mislead that the elongation is exerted along the total 
length of the fascicle, and may underestimate the 
stiffness of the fascicle, even though the stiffness of the 
most part of the fascicle is much higher. We believe the 
matrix or the fascicle-fascicle and fascicle-matrix 
interactions contribute to surpress excessive strain on 
the weak portion, resulting in increase in stiffness of the 
ligament. Our cross-link spring demonstrated the role of 
the above-mentioned interactions. 

For the sake of simplicity we employed only two 
kinds of spring constants. Springs with various spring 
constants should be employed and allocated basing 
upon the statistics from the experimental data in oder to 
make the model more realistic. 

As shown in Fig.8, our simulation results clearly 
represented the three phases seen in a stress-strain curve 
of the natural ligament. In the case of (c) i.e. a model 
with the springs of the various initial lengthes and with the 
cross-link springs, the shape of the stress-strain curve 
around the failure phase duplicated that of the natural 
ligament; indicating a successive rupture of fascicles, and a 
laxity state of the ligament. 
 
The hyper-elastic continuum model  

The inverse characteristic between the fascicle and the 
collective ligament was reproduced in the simulation for 
the hyper-elastic continuum model as well. We set the 
stiffness of the matrix much lower than that of the fascicle. 
Neverthless the matrix contributes to surpress excessive 
strain on the weak segment as the cross-link springs do 
in the linear springs’ aggregation model. From Fig.9, we 
found that high stresses were exerted on the strong 
segments which adjoin the weak segments. Thus we may 
introduce such an important conclusion that a ligament’s 
failure could initiate on those strong segments. 

In our hyper-elastic continuum model, yet three 
phases in the stress-strain characteristic have not been 
reproduced, the validity for the parameter values used in 
the simulation have not been verified either. These are the 
problems to be solved in our future study. 
 
 
 

 
Conclusion 
 

We have developed two mathematical models of 
the ligament to explain how the ligament can be 
stiffer than the fascicles which must be stiffest in the 
ligament. In both the models, we took into account 
the mechanical non-uniformity of the fascicle along 
its longitudinal direction and the contribution of 
interactions between the fascicle-fascicle and the 
fascicle-matrix against the elongation of the fascicle. 
Simulation results from both the models 
demonstrated that the tangnt modulus of the stress-
strain curve for the collective ligament became 
higher than that of the fascicles. The results may help 
to understand the mechanism of ligament's failure. 
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