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Abstract: Electrical resistance tomography (ERT) 
has great potential to be used for multi-phase flow 
monitoring. The Image reconstruction in ERT is 
computationally costly, so the online monitoring is a 
difficult task. The linear reconstruction methods are 
currently used as fast methods. The image 
reconstruction is a nonlinear inverse problem and 
the linear methods are not sufficient in many cases. 
The application of a recently proposed non-iterative 
inversion method for two-phase materials in has 
been studied. The method works based on 
Monotonicity property of the resistance matrix in 
ERT and it requires modest computational cost. In 
this paper we explain the application of this 
inversion method. We demonstrate the capabilities 
and drawbacks of the method by using 2D test 
examples. A major contribution of this paper is to 
optimize the software program for the inversion (by 
doing most of the computations offline), so it can be 
used for online application.  
 
Introduction 
 

Electrical resistance tomography (ERT) is relatively 
new imaging modality [1]. ERT attempts to reconstruct 
the conductivity distribution inside a material. The ERT 
data is a set of the measurements of the DC resistances 
between pairs of electrodes in contact with the 
conductor under investigation. Figure 1 is a picture of 
the experimental ERT system, designed and fabricated 
in Sharif University of technology [2]. 

There are many applications that ERT system is to 
image an interface between two-phase materials. In such 
cases the objective of the image reconstruction is to 
identify the shape of inclusions. In this paper we present 
a shape reconstruction technique for ERT based on 
montonicity property of the resistance matrix [2]. is the 
official language. Please, do not forget to check the 
spelling. Read the instructions in this sample abstract 
carefully before typing. 
 
Materials and Methods 
 

The block-diagram of SUT-1 [6], is shown in Figure 
1. Here only the main blocks of system hardware are 
discussed. Moreover, for each measuring channel, a 
well-known block is used [3]. The utilized computer is a 
usual Pentium-base PC, which is connected to the 
measurement system through an Input-Output interface 
(I/O) card. In the main board a current generator with 

5mA @ 23 kHz and a precision voltage measurement 
(using synchronized pulse demodulation technique) are 
implemented. The accuracy of digital system is 12 bits. 
It is shown that the 12-bit digital resolution is a 
reasonable choice for the most applications [2]. The 
switching between different pairs of electrodes is 
carried out by computer using multiplexer card (MUX 
board). The collected data from all possible voltage 
measurements are fed to the image reconstruction 
software. In the following a brief description of any 
individual module of this system is shown. 

 

 
Figure 1: The block- diagram of SUT-1 
 
I/O card: For I/O module, an ADVANTECH PCL-
812PG I/O card is used [13]. It consists of 16 bit 
programmable I/O card with 12-bit successive 
approximation analogue to digital converter, (30 kHz 
sampling rate), programmable Time/Counter/Gain and 
two 12 bit monolithic multiplying digital to analogue 
converter output channels. Due to application of an 
unsophisticated analogue to digital conversion 
algorithm, it is not a fast sampling card.  

Forward model: The mathematical model of ERT, 
assuming a linear material of conductivity σ and the 
complete electrode model [3],[4],[5], which includes a 

contact resistance kz  between the electrodes and the 
conductor, is given by 

, 1, ,k kz V k Nφφ σ
ν
∂

+ = =
∂

K  

Where Vk is the potential applied to the k-th 
electrode, Vc is the conductive domain, σ is the 
conductivity, φ is the scalar potential and N is the 

0)( =∇⋅∇ φσ in Vc (1) 
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number of electrodes. The current ik flowing into the 
conductor through the k-th electrode is given by 

dsI
iE

k ∫ ∂
∂

=
ν
φσ . 

Figure 2 shows an electric potential distribution 
from our forward solver using finite element method. In 
figure 3 one can see a set of resistance measurement. 

 
 
Figure 2: Electric potential distribution with opposite 
current pattern 
 
 

 
 
Figure 3: Measurement of the resistance matrix 

 
Thanks to the linearity of the model, the relation 

between electrodes currents and voltages is given by a 
matrix multiplication v=Ri , Where R is the resistance 
matrix, an (N-1)(N-1) symmetric matrix, v and i are the 
columns vectors of electrodes voltages and currents, 
respectively. corresponding measured voltages is shown 
at right. 

We notice that usual measurements protocol does 
not directly measure the resistance matrix. In these 
cases, the resistance matrix can be easily recovered 
from the measured data (assuming that N(N-1)/2 
measurements are available). The main property of the 
resistance matrix, from the perspective of the inversion 
method, is the monotonicity, see [4]. 

( ) ( )1 2 1 2in cVη η≥ ⇒ ≥x x R R  (2) 
Where Rk is the second order moment associated kη . For 
two phases problem, (2) can be recast as 

cD D Vβ α α β⊆ ⊆ ⇒ ≥R R  (3) 
Where Rγ, for { },γ α β∈  is the resistance matrix 
related to a resistivity γη  defined as 

( )
/

i

b c

D
V D
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γ

γ
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η
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Where bη  is the resistivity of the first phase that we call 
the background phase, and i bη η>  is the resistivity of 
the second phase that we call inclusion or anomalous 
phase. We stress that the monotonicity (2) and (3) hold 
for the actual resistance matrix and for the numerically 
computed resistance matrix. 
 

Inversion algorithm: The inversion method here 
presented for two-phase problems, is a quantitative non-
iterative inversion method [4] requiring the solution of a 
number of direct problems growing as O(N), where N is 
the number of voxels used to discretize the unknown. In 
the following we briefly summarize the inversion 
method with reference to the ERT. The inversion 
method is based on the following property of the 
unknown-data mapping 

 
Reversing (4) we obtain the proposition at the basis 

of the inversion method: 

 
Proposition (5) is a criterion allowing us to exclude the 
possibility that Dβ is contained in Dα using from the 
resistance matrices Rα and Rβ. Notice that (5) does not 
exclude that Dα and Dβ are overlapped, i.e. does not 
exclude the case D Dβ α∩ ≠ ∅  where ∅  is the void 
set. 

Let us initially assume that the measured resistance 
matrix R%  is noise free ( R%  corresponds to the anomaly 
in V), that the conductive domain Vc is divided into N 
“small” non-overlapped parts Ω1,…,ΩN and that the 
anomalous region V is union of some Ωk’s (figure 4). 

 

 
 
Figure 4: Dividing to pixels 
 

The proposition (5) yields in a rather natural inversion 
method. In fact, to understand if a given Ωk is part of V 
(given the knowledge of R% ) we need to compute the 
largest positive and the smallest negative eigenvalues of 
the matrix k−R R% , where kR  is the resistance matrix 
corresponding to an anomalous region in Ωk If the 
product of these two eigenvalues is negative, then 

k−R R%  is not a positive semi-definite matrix and, 

therefore, from (5) applied to R%  and kR  it follows 

is a positive semi-definite matrixcD D Vβ α α β⊆ ⊆ ⇒ −R R (4) 

 not a positive semi-definite matrix Dα β β− ⇒ ⊆R R Dα  (5) 
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that kΩ ⊆V . Since Ωk is contained in V or external to 
V (we are assuming that V is union of some Ωk’s), it 
follows that Ωk cannot be included in V. It is worth 
noting that the criterion (5) is a sufficient condition to 
exclude Ωk from V. Therefore, the reconstruction V%  
obtained as the union of those Ωk such that k−R R%  is 

positive semi-definite includes V, i.e. V V⊆ % . 
 

In addition, we notice that the test matrices 1, , NR RK  
can be precomputed and easily stored since they are 
Ne×Ne symmetric matrices, where Ne is the number of 
electrodes (apart from the reference electrode) that, 
generally, is a number not exceeding few dozens. In 
addition, the computational cost to compute the largest 
and smallest eigenvalues of k−R R%  is moderate. The 
method is non-iterative we can decide if Ωk is part of V 
independently from Ωi for i≠k. 

Once the exterior set is defined, the second test can 
be used to find the interior set. The combination of the 
test results allows the shape of the inclusions to be 
approximately determined. Those pixels in the interior 
set are definitely in the inclusions, those not in the 
exterior sets are definitely not in inclusions. It is not 
possible, however, to definitively assign the remaining 
pixels. Further modelling will be introduced before an 
attempt is made to assign these pixels. 
 
Results 
 

For this part, we measured the voltage and then 
reconstructed images in 16 and 32 electrodes modes. In 
practical conditions, EIT is very sensitive to noise. 
Electrodes are connected via a shielded cable to the 
system for noise reduction. Figures 5-6 illustrate two 
actual images using a phantom in experimental EIT 
system [2]. The phantom was made of PVC cylinder 
with 30 cm diameter and filled with saline. Figure 6 
shows the design and experimental results for a 
phantom where an object with different resistivity (a 
normal milk bottle) is put at the corner, i.e., at x=0 cm 
and y=-6 cm from the geometrical center of the tank. 
Figure 5 shows the design and experimental results for a 
phantom with two objects. Measured data were 
transferred to the computer, the reconstruction 
algorithm applied and image was obtained using back 
projection method.  

As seen in Figure 6, a star artifact is resulted from 
back projection. This is a well-known artifact for the 
back projection method. Basically, it is due to limitation 
in the number of projections.  

Figure 7 shows reconstruction of shape (in left), 
where area including gray and white in figure 6 (right) 
is the result of the exclusion test. The white area in 
figure 6 is the resulting shape of inclusion by exclusion 
test.  

 

 
Figure 5: A real test object and its EIT reconstructed 
image using back projection method. 
 

 
Figure 6: Another real test object and its EIT 
reconstructed image using back projection method. 
 

 
Figure 7: True image (left), reconstructed (right) 
 

Figure 8 and 9 show reconstruction of the shape of 
an inclusion in 12 two electrodes EIT arrangement a 
circular cross section (to represent cross section of a 
pipe line) and a rectangular shape (represent the .  
 

    
 

  
Figure 8: True image (left), exterior test (middle), 
interior test (right) 
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Figure 9: True image (left), reconstructed (right) 
 

For the monotonicity technique one needs to solve N 
forward problem (for each inverse pixel), for the 
excluding test. This can be done offline as the method 
assumes two phase materials and the conductivity of 
two phases are known. The inclusion test requires fewer 
number of the forward solution and can be done online. 
(see figure 10) 

 
Figure 10: Shape reconstruction, the inclusion of test in 
left reconstructed in right. 
 
Conclusions 
 

The monotonicity method potentially offers a fast, 
stable, non-iterative, and non-linear reconstruction 
algorithm for the important use of two-phase mixtures 
in resistance tomography. The method has been tested 
for 2D test examples in this paper. A major part of the 
computations (solving the forward problems for the 
excluding test) can be done offline, so the technique can 
potentially be used for online applications. In practice, 
back projection as a fast inverse solver produce low 

quality images. Other fast solver such as Landweber 
linear iterative method are working better than back 
projection, but suffering from a linearization 
assumption.  
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