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Abstract: A new two-dimensional method for ultra-
sonic imaging is presented. It increases the spacial
resolution of ultrasonic images by postprocessing the
raw radiofrequency signal. The approach is based
on maximum-likelihood blind deconvolution. The re-
stored true image and the degrading process char-
acteristics are estimated simultaneously based on a-
priori constraints.
The approach extends the two-dimensional homomor-
phic deconvolution concept by using it only for ini-
tial estimation. This avoids the limitations of ho-
momorphic deconvolution, namely the need for two-
dimensional phase unwrapping and the assumption
that the true image and the degradation characteris-
tics are represented by different separate bands in the
cepstrum domain.
The algorithm was tested on data acquired from a
tissue-mimicking phantom and on clinical data. The
observed and measured spacial resolution of the re-
sulting images was substantially increased.

Introduction

The fairly low spatial resolution is one of the major
limiting factors in the clinical usefulness of medical ul-
trasound B-mode images. This is still true, eventhough
the spatial image resolution of high end ultrasound scan-
ners has been substantially improved in the last decade.

Ultrasonic images can be modeled as a convolution
of the point spread function (PSF) of the imaging pro-
cess and the tissue function, which characterizes the dis-
tribution of specular reflectors and diffuse scatterers in
the imaged area. One way to increase the spatial resolu-
tion of medical ultrasonic images is by deconvolving the
observed radiofrequency image by the PSF.

The PSF is, to large extent, determined by the im-
aged tissue. Thus, the PSF has to be estimated from
the recorded radiofrequency data together with the tissue
function, using so called blind deconvolution [1].

There have been several methods to estimate the PSF
from the measured radiofrequency data. Most tech-
niques estimate the one-dimensional (1-D) PSF in the ax-
ial [2, 3, 4, 5, 6] and in the lateral [6] direction. The 1-D
PSF can be estimated from the measured radiofrequency
signal using the prediction error algorithm [2], analysis
in the real cepstrum [3], complex cepstrum [4] or bicep-
strum [6] domain.

In general, the PSF is not separable in the axial and
lateral directions. Thus, it has to be estimated as a 2-D
function. So far, the only successful 2-D blind deconvo-
lution of ultrasound images has been the approach based
on filtering in the 2-D cepstrum domain, also called ho-
momorphic liftering [7, 8, 9, 10]. In this approach, it is
assumed that the PSF and the tissue function reside in
separate bands of the 2-D cepstrum domain. This simpli-
fying assumption has been the major objection against the
approach. Another drawback of the 2-D homomorphic
deconvolution is the necessity for 2-D phase unwrapping,
which is an ill-posed noise-sensitive problem [11].

In other applications, e.g. astronomy and remote
sensing, the blind image deconvolution has been used to
much larger extent and these fields can be a good inspira-
tion for deconvolution of ultrasound images. There have
been two main approaches to blind image deconvolution
[1].

1. Separate estimation of the PSF which is subse-
quently used in one of the classical deconvolution algo-
rithms. The approach is applicable if the true image in-
cludes some special features (e.g. points, edges) or when
the PSF is of a special parametric form (e.g. out-of-focus
lens system, linear camera motion). A special case falling
into this group is homomorphic deconvolution.

2. The second approach is a simultaneous estimation
of the PSF and the true image. One class of these methods
models the imaging process using autoregressive moving
average (ARMA) parameters. The deconvolution prob-
lem is formulated as a maximum likelihood estimation
[12] or generalized cross-validation [13]. The methods
rely on second-order statistics and hence can not retrieve
the phase of the PSF. These methods are suitable for
applications where the PSF is symmetric or minimum-
phase or where strong additional assumptions can be im-
posed on the PSF. Another approach to simultaneous es-
timation of the PSF and the true image is nonparamet-
ric identification. A classical approach of this class is
the iterative blind deconvolution (IBD) [14], known to
have poor convergence properties. The drawback is im-
proved by formulating the deconvolution as a nonpara-
metric maximum-likelihood problem [15].

This paper presents a method to improve 2-D homo-
morphic deconvolution of ultrasound images by means
of blind iterative deconvolution. It avoids both the above
mentioned limitations of the 2-D homomorphic decon-
volution, i.e. the assumption that the PSF and the tissue
function lie in different 2-D cepstrum bands and the 2-D
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 phase unwrapping problem.
2-D homomorphic liftering is used only to obtain

an initial estimate of the amplitude response of the de-
grading system. In the initial estimation, 1-D phase un-
wrapping is used instead of the 2-D phase unwrapping.
Subsequently, blind iterative deconvolution is used to si-
multaneously estimate the full PSF and the tissue func-
tion. Nonparametric blind iterative deconvolution has
been chosen and adopted to ultrasound radiofrequency
data. The ARMA parameter estimation methods are not
suitable in this application because the PSF in ultrasound
imaging is not symmetric or minimum-phase in general.
The problem is formulated as maximum-likelihood de-
convolution and solved using the conjugate gradient op-
timization method.

Model of Distortion

The input image for the deconvolution is formed by
radiofrequency data recorded by a sector scanner. The
data are processed in polar coordinates. The distortion of
the radiofrequency image can be modeled using a spa-
tially variant linear operator. For a small subimage s
of the complete radiofrequency image, spatially invariant
distortion can be assumed:

gs(m,n) = fs(m,n)∗hs(m,n)+ws(m,n). (1)

The operator ∗ stands for 2-D convolution. m,n are the
spatial-domain indices corresponding to the radial and
lateral directions. g(m,n) is the received radiofrequency
image data. f (m,n) is the tissue function describing the
distribution of reflectors and scatterers in the imaged area.
h(m,n) is the PSF of the imaging process and w(m,n) is a
noise term, accounting for the measurement noise of the
electronic circuits.

The PSF in the frequency domain can be modeled as
a combination of four components:

Hs(ω1,ω2) = Htr(ω1) ·S(ω1,ω2) ·P(ω1,ω2) ·A(ω1).
(2)

Htr(ω1) describes the electroacoustical transfer func-
tion of the transducer, both on emission and reception,
and the electrical excitation of the transducer. It is con-
stant through all subimages of the complete radiofre-
quency image. S(ω1,ω2), is a two-dimensional transfer
function that relates the transducer geometry to the spatial
extent of the ultrasound beam. It describes the diffraction
pattern and focusing which determine the beam profile.
S(ω1,ω2) changes with position in the image. P(ω1,ω2)
is the tissue transfer function due to the phase front aber-
ration [16], a phenomenon taking place mainly in the fat
layers of the body wall which seriously degrades the spa-
tial resolution. A(ω1) accounts for the attenuation of the
tissue between the probe and the subimage position and
within the subimage itself. It is a 1-D process in the radial
direction. Both P(ω1,ω2) and A(ω1) change with posi-
tion of the subimage because they depend on the tissue.

In the present approach, it is convenient to approxi-
mate the spatially variant components P(ω1,ω2), A(ω1)

and S(ω1,ω2) by their global parts. That means that the
PSF is assumed spatially invariant in the whole image and
the following model of the complete radiofrequency im-
age can be used:

g(m,n) = f (m,n)∗h(m,n)+w(m,n). (3)

The notation corresponds to the one in Eq. 1. Then, the
deconvolution can be applied to the whole image. Thus,
only the global degradation is identified and removed
from the input radiofrequency data. The locally varying
components of P(ω1,ω2), A(ω1) and S(ω1,ω2) remain
present.

Initial Estimation

In blind iterative deconvolution techniques, it is im-
portant that the initial estimate of the tissue function and
the PSF lie as close to the true values as possible. So
far, the most reliable results have been obtained using ho-
momorphic liftering [7, 8, 9]. Hence, the approach was
chosen for the initial estimation. The basic idea is to es-
timate the PSF from the complex-cepstrum-domain rep-
resentation of the measured radiofrequency image and to
use it in Wiener filtering for initial estimation of the tissue
function.

The homomorphic transform of the input image (i.e.
mapping to the complex cepstrum domain) is divided into
homomorphic transform of the amplitude and phase of
the input image spectrum.

The amplitude spectrum is obtained from the Fourier
transform of a zero-padded image (to avoid cepstrum-
domain aliasing [17]). Then the spectrum amplitude is
transformed by adding a small constant (to avoid zero val-
ues), applying logarithmic transform and finally inverse
Fourier transform [7].

In homomorphic mapping of the phase image of the
input image spectrum, the 2-D phase unwrapping is
avoided by assuming a separable PSF. Then, the task is
decomposed to the estimation of the 1-D PSFs in the ax-
ial and lateral directions. As shown in [4], the most reli-
able 1-D method of homomorphic transform is based on
polynomial rooting [17]. Thus, the approach was chosen
here too. First, all beams of the input image are divided
to short overlapping segments. Then the segments are
mapped to the complex cepstrum domain and the result-
ing cepstra averaged. The same procedure is done in the
lateral direction. As the PSF in the lateral direction is
close to a symmetric signal, i.e. its complex cepstrum is
symmetric too [17], symmetry was induced on the lateral-
direction cepstrum. In the resulting complex cepstrum of
the separable 2-D PSF, the 1-D cepstra of the axial and
lateral direction form the corresponding main axes [7].

The complex cepstra of the amplitude and phase of
the input image spectrum are combined together to form
the complete complex cepstrum of the input image. The
complex cepstrum of the initial 2-D PSF is calculated
by 2-D Butterworth liftering of the input image data in



The 3rd European Medical and Biological Engineering Conference November 20 – 25, 2005 
EMBEC'05  Prague, Czech Republic 

IFMBE Proc. 2005 11(1)  ISSN: 1727-1983 © 2005 IFMBE  

 the the complex-cepstrum domain [8, 9]. The initial es-
timate of the PSF is obtained by inverse homomorphic
transform.

The initial estimate of the tissue function is obtained
by Wiener filtering. It is known that small errors in the
PSF give rise to big errors in the Wiener-filtered image.
The amplitude spectrum of the initial PSF is estimated
more accurately than the phase, which was calculated us-
ing the separability assumption and with numerical errors
of polynomial rooting. Thus, only the amplitude spec-
trum information of the PSF is used for the Wiener filter,
while the phase is set to zero (meaning 2-D symmetry of
the PSF in the spatial domain). The signal-to-noise ratio
used in the Wiener filter is assumed constant.

Blind Iterative Deconvolution

The blind iterative deconvolution is formulated as
maximum likelihood estimation of the PSF and the tis-
sue function. It is derived from the statistics of the noise
term w(m,n). For ultrasound images, a Gaussian noise
model is often used. This leads to the following form of
the maximum likelihood term [15]

εML = ∑
m,n

|g(m,n)−h(m,n)∗ f (m,n)|2. (4)

The pixels of the PSF and the tissue function are esti-
mated by minimizing εML. Conjugate gradient optimiza-
tion is used here. The first derivative of the criterial func-
tion, required by the algorithm, is derived analytically
[15].

The iterative deconvolution algorithms are known to
converge to local extrema of the criterial function. To
obtain an estimate which is closer to the true values, it is
necessary to introduce additional constraints. A known
support region is supposed for the tissue function and the
PSF. All values outside the support region are assumed
zero. The support region of the tissue function is identical
to the size of the input radiofrequency image. The PSF
support region is set to the assumed size of the PSF, based
on PSF measurements. To keep the energy of the updated
PSF on a constant level, it is forced to have unity energy.
Furthermore, zero mean value is induced to the PSF.

The support-region constraint is directly incorporated
in the optimization algorithm. The unity-energy con-
straint is applied as a strict constraint, similarly to [15].
Here, it is formulated as the following substitution:

h(m,n) =
ψ(m,n)

√

∑m,n ψ(m,n)
. (5)

A similar substitution follows for the zero-mean con-
straint:

ψ(m,n) = φ(m,n)−
1

MN ∑
m,n

φ(m,n), (6)

where M and N are the extents of the PSF in the axial and
lateral directions.

Then, the optimized variables are the values (pixels)
f (m,n) and φ(m,n). The derivative of the criterial func-
tion is modified to account for both substitutions.

Experimental data and parameter values

The deconvolution method was tested on image
sequences recorded from a tissue-mimicking phantom
Gammex 403GS and on clinical images of kidney, aorta
and heart. All image sequences were recorded using GE
Vingmed Ultrasound System 5 scanner, with a phased
array probe FPA 64 2.5c (64 elements, nominal fre-
quency 2.5 MHz). Raw radiofrequency image data after
quadrature demodulation were used (demodulation fre-
quency 2.2 MHz, sampling frequency after demodulation
3.3 MHz).

The phantom data were recorded from an imaged re-
gion covering 5 point targets. The phantom sequence
consisted of 6 frames. The clinical image sequences con-
sisted each of 10 images.

The Butterworth filter used in the cepstrum-domain
low-pass liftering was of order 5 and the radial and lat-
eral locus values were 3 and 2, respectively. The approx-
imate values were determined from the log-spectrum of
the recorded radiofrequency signals as described in [18]
and then further experimentally adjusted to give the best
results.

The number of iterations used in the conjugate gra-
dient optimization was 45. With further iterations, the
improvement of the spatial resolution became negligi-
ble, with increasing noise level. The noise-to-signal con-
stant of the Wiener filter was 0.05 as the value giving the
highest spatial resolution without decreasing the signal-
to-noise ratio in the image.

Evaluation procedure

An exact evaluation of the deconvolution perfor-
mance is possible if the true image is known. This was
the case of data recorded from the used phantom. The
resolution was evaluated, from the polar-coordinate rep-
resentation envelope images of nylon wires located per-
pendicularly to the tomographic plane of the image. An
image of such point targets gives an estimate of the 2-
D point spread function at the current position (distorted
by surrounding diffuse scatterers). For each point target,
a small image area was selected covering the complete
point spread function. Then, the corresponding envelope
subimage was normalized and the size of the point spread
function was measured as the area under the pixels with
values higher than 0.5

For clinical recordings, the true images are not
known, thus, there is no exact quantitative method to
evaluate the resolution improvement of the deconvolved
images. However, as shown in previous papers on decon-
volution of ultrasonic images [6, 7, 4, 5, 9], the resolution
gain can be estimated visually or quantitatively using an
autocorrelation criterion.
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 The visual evaluation is possible for image areas
showing structures with well defined borders, e.g. my-
ocard and vessels. The sharpness and continuity of the
borders is a good measure of the spatial resolution. Fur-
thermore, higher spatial resolution is also indicated by
finer speckle pattern, as the spatial correlation of speck-
les increases with the extent of the point spread function.

The autocorrelation measure was used as follows.
First, the 2-D autocorrelation was computed from the en-
velope of the polar coordinate representation of the in-
put and deconvolved images. The number of pixels of
the normalized autocorrelation function with value higher
than 0.75 (corresponding to a 2.5 dB reduction) was
counted in the original and the deconvolved images. The
ratio between these numbers was taken as the numeric
measure of the resolution gain.

To evaluate the effect of deconvolution on the noise
level, the spatial signal-to-noise ratio was estimated. In
image processing applications, the noise power Sww is es-
timated as the average of squared pixel values within a re-
gion containing only noise. The average of squared pixel
values within the complete image, Sgg estimates the sum
of the noise power Sww and the signal power S f f . The
signal-to-noise ratio is then estimated as Sgg−Sww

Sww
.

For ultrasonic images, the homogeneous regions
would correspond to regions with no reflectors and scat-
terers. Such regions do not exist in real tissues. Image
regions of low echogeneity (blood areas, kidney cortex)
were chosen here as the closest approximation of such
regions. The computations were done on the radiofre-
quency data representation.

Results

The spatial quality was assessed for the input image,
initial homomorphic deconvolution estimate and for the
output of the iterative deconvolution. The results (Ta-
ble 1) show that the spatial resolution was increased in
the initial estimate and further improved by the iterative
deconvolution. The signal-to-noise ratio remained un-
changed (Table 1).

Table 1: Size of the PSF measured on phantom data
(mean ± std.dev.) and signal-to-noise ratios (SNR)

Image PSF size SNR
sequence [mm x rad] [dB]
Input image 0.052 ± 0.016 21.8 ± 0.02
Initial estimate 0.045 ± 0.023 22.6 ± 0.10
Iterative deconv. 0.039 ± 0.021 22.8 ± 0.10

Same effects of the iterative deconvolution were ob-
served on clinical images. The spatial resolution was sig-
nificantly increased in the initial estimate. Further im-
provement by iterative deconvolution was observed, but
the increase in the spatial resolution was smaller. This

was observed visually as increased sharpness of the kid-
ney capsule, delineation of aorta and liver vessels and
better definition of myocard. Also the speckle pattern
of the deconvolved images was more distinct with much
shorter spatial correlation. An example is shown in Fig. 1.
The autocorrelation measure of the spatial resolution gain
confirms the visual observation (Table 2).

(a)

(b)

Figure 1: Images of kidney. (a) Original image. (b) Iter-
ative deconvolution result.

Table 2: Resolution gain of the deconvolved images
(mean ± std.dev.)

Image Resolution gain Resolution gain
sequence (initial est.) (iterative deconv.)
kidney 2.9 ± 0.3 3.3 ± 0.2
heart 3.3 ± 0.2 3.7 ± 0.2
aorta/liver 2.8 ± 0.1 3.0 ± 0.1

The estimates of the spatial signal-to-noise ratio (Ta-
ble 3) indicate that neither homomorphic deconvolution
nor the subsequent iterative deconvolution affect nega-
tively the noise level of images.
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 Table 3: Spatial signal-to-noise ratios of the input images,
initial estimates and images after iterative deconvolution

Image SNR [dB]
sequence input (initial est.) (iter. dec.)
kidney 8 ± 2 9 ± 1 9 ± 1
heart 8 ± 3 7 ± 3 7 ± 3
aorta/liver 18 ± 2 17 ± 1 17 ± 2

Discussion and conclusion

A new 2-D deconvolution technique for ultrasound
imaging has been presented. The approach is based on
maximum-likelihood blind deconvolution. The tissue
function and the PSF are estimated simultaneously based
on a-priori constraints.

The approach extends the two-dimensional homo-
morphic deconvolution concept by using it only for ini-
tial estimation. This avoids the limitations of homomor-
phic deconvolution, namely the need for 2-D phase un-
wrapping and the assumption that the tissue function and
the PSF are represented by different separate bands in the
cepstrum domain.

The presented method is focused only on estimation
and removal of the global part of the PSF. This enabled
the deconvolution of the whole radiofrequency image,
which made it more reliable and faster than the deconvo-
lution of small subimages [9] which would, on the other
hand, take also the spatially variant PSF components into
account.

Both parts of the algorithm, i.e. the homomorphic and
iterative deconvolutions, can be further improved. The
initial estimate could be improved by applying some new
noise-robust 2-D phase unwrapping methods (e.g. [10]).
The Blind iterative deconvolution step is expected to give
better results by applying more a priori constraints on the
estimated functions in combination with more advanced
deconvolution methods.
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