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Abstract: In this paper we compare four different 
snakes segmentation methods for segmenting the 
athrerosclerotic carotid plaque from longitudinal 
ultrasound images of the carotid artery. The 
accuracy and reproducibility of the methods were 
tested on 80 images and the results were compared 
with the manual delineations of an expert. The 
comparison showed that the Lai&Chin snakes 
segmentation method gave better results with the 
true positive fraction, TPF, true negative fraction 
TNF, Williams index, KI, and overlap index, to be 
82.70%, 80.89%, 80.66%, and 69.30% respectively. 
Better false negative fraction, FNF, and false positive 
fraction, FPF, were given by the Balloon method 
with 13.90% and, 5.40% respectively. 

Introduction 

Carotid atherosclerosis is the primary cause of stroke 
and the third leading cause of death in the United States. 
Almost twice as many people die from cardiovascular 
diseases than from all forms of cancer combined. 
Atherosclerosis is a disease of the large and medium 
size arteries, and it is characterized by plaque formation 
due to progressive intimal accumulation of lipid, 
protein, and cholesterol esters in the blood vessel wall 
[1], which reduces blood flow significantly. 
Traditionally the degree of artery stenosis, or narrowing, 
has been targeted as the marker for assessment of risk 
for plaque vulnerability depended on the type of plaque, 
and considered to cause either a complete arterial 
occlusion or ischemic event in the brain. The risk of 
stroke increases with the severity of carotid stenosis and 
is reduced after carotid endarterectomy [2]. The degree 
of internal carotid stenosis is the only well established 
measurement that is used to assess the risk of stroke [3]. 
Indeed, it is the only criterion at present used to decide 
whether carotid endarterectomy is indicated or not [4].  

The development and testing of new, accurate 
methods, for non-invasive assessment of plaque size and 
vulnerability will help the clinical assessment of the 
subject. Furthermore, non-invasive assessment of 
plaque characteristics will help the way in which 
athrerosclerotic disease is diagnosed, monitored and 
treated.  

Active contour models have been proven to be a 
promising approach in many different fields in 
computer vision [5]. They have been applied to image 
segmentation, analysis of static images [6] and image 
sequences of real time systems [7]. Many extensions of 
the original snake approach [5] have been suggested, 
referring to the definition of the energy as well as to the 
energy minimization and some regularization factors for 
the snake [8]. The models have been presented in 
different application areas thus making comparisons or 
predictions of the behavior of the models in another area 
of application hardly to draw.  

The research on plaque segmentation of carotid 
artery ultrasound images presented in the literature, is 
very limited. This is also shown from the small number 
of publications made in this area, which are mostly 
reported in conference proceedings. Specifically, in  [9] 
an unknown number of transversal ultrasound images of 
the carotid artery were used to detect the lumen borders 
of the carotid artery. The proposed method consisted of 
four stages, namely pre-processing, quantization, 
morphological contour detection, and contour 
enhancement. In the pre-processing step a histogram 
equalization was performed, and a median filter was 
applied for despeckling the image. In [10] a dynamic 
balloon model [7] represented by a triangular mesh was 
applied for detecting the plaque borders on two 3D 
ultrasound carotid images where the initial contour was 
placed manually. The plaque borders were detected 
through reconstruction of the inner lumen borders. The 
result was a surface indicating the outline of the lumen.  
In other studies performed researchers have tested their 
proposed segmentation techniques, on 20 MRI 
transversal carotid images [11] to detect the lumen and 
the outer wall boundaries of the artery by using the 
gradient vector flow (GGVF) field [12], where the 
snake initial contour was placed manually by an expert. 
In [13], a segmentation method for the arterial walls and 
plaque based on dynamic programming was proposed. 
The method was applied on 62 transversal MRI images 
and compared with the manual delineations made by an 
expert whereas the initial contour was found by 
manually placing four points on the artery walls.  

There is until today no other study reported for 
comparing different snake models for segmenting 
longitudinal ultrasound images of the carotid artery, 
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 which will enable us to choose the optimal active 
contour model.  

In this paper we investigate the segmenation of 
atherosclerotic carotid plaque using four different active 
contour models as follows: (i) the Williams&Shah 
snake [6], after the addition of some constrains [9], (ii) 
the Balloon [7], (iii) the Lai&Chin [8], and (iv) the 
gradient vector flow (GVF) snake [12]. Preliminary 
results of this study were published in [14] and [15]. 
The snake segmentation methods as well as the 
methodology of our study is presented in the following 
section. Finally, the results and the concluding remarks 
are presented. 

Methods 

Williams&Shah Snake 

A snake contour may be represented parametrically 
by  where  denotes the 
spatial coordinates of an image, and 

)],(),([)( sysxsv = 2),( ℜ∈yx
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represents the parametric domain. The snake adapts 
itself by a dynamic process that minimizes an energy 
function defined as [6] 
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At each iteration step, the energy function in (1), is 
evaluated for the current point in , and for the 
points in an mxn  neighborhood along the arc  length, 

)(sv

s , of the contour. Subsequently the point on , is 
moved to the new position in the neighborhood that 
gives the minimum energy. The term , in (1) 
denotes the internal energy derived from the physical 
characteristics of the snake and is given by the 
continuity , and the curvature term . 
This term controls the natural behavior of the snake. 
The internal energy contains a first-order derivative 
controlled by 

)(sv
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)(sα , which discourages stretching and 
makes the model behave like an elastic string by 
introducing tension and a second order term controlled 
by )(sβ , which discourages bending and makes the 
model behave like a rigid rod by producing stiffness. 
The weighting parameters )(sα  and )(sβ  can be used 
to control the strength of the model’s tension and 
stiffness, respectively. Altering the parameters ,α  β , 
and γ , affect the convergence of the snake. The second 
term in (1) , represents the image energy due to 
some relevant features such as the gradient of edges, 
lines, regions and texture [6]. It attracts the snake to 
low-level features such as brightness and edge data. 
Finally the term , is the external energy of the 
snake, which is defined by the user and is optional. In 
our study we used a modification of the greedy 
algorithm as presented in [6]. 
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Balloon Snake 

Cohen [7] introduced a Balloon snake, whose 
internal energy causes it to expand from inside of the 
boundary until it reaches it. The original snake model 
was improved through normalization of the force field 
term. The energy functional in (1) may then be rewritten 
by substituting the image field force, , as follows imageE
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where , is a normal unity vector normal to the 

snake curve at point , and , is the amplitude of 

this force. The addition of a new term, , to the 

force field, , makes the contour have a more 
dynamic behavior. The curve may be considered as a 
balloon that is inflated. By changing the sign of, , the 
curve will deflate instead of inflate.  
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Lai&Chin Snake 

Lai&Chin proposed a different snake approach, 
including a regularization parameter, πλ , to control the 
balance between the external and the internal forces [8] 
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If, the regularization parameter, 1=πλ , then the snake 
uses the internal energy only, whereas if, , the 
snake will be attracted to the selected image function 
only.  The regularization parameter is calculated at 
contour points as [8] 
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where , is the variance of the snake point i , and 

, the variance of the noise at the snake point.  
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GVF Snake 

In a GVF snake model [12], the external force 
cannot be written as the negative gradient of a potential 
function. Instead, the external force of the GVF snake 
model is defined by a gradient vector flow field, which 
minimizes the energy functional given by  

.)())(( 222222 dxdygggvvuusvE yxyxsnake ∇−∇++++=∫∫µ   (5) 

The notation g , and µ , stands for an edge map 
computed using the image, and a regularization 
parameter, respectively. The GVF field is obtained 
directly by solving numerically the Euler equations [12]. 
The position of the GVF snake is changed iteratively 
such that the energy functional in (4) is minimized. 

 The parameter values for the snake models, were 
the same in all experiments, namely for the 
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 Williams&Shah snake, 4.0=sα , 4.0=sβ , 2=sγ , 
the elasticity, rigidity and the regularisation parameters 
for the GVF snake was, 05.0=GVFα , 0=GVFβ , 

2.0=GVFµ , and the regularisation parameter πλ , for 
the Lai&Chin snake, was variable and calculated 
according to (4). 

Recording of Ultrasound Images 

A total of 80 B-mode and blood flow longitudinal 
ultrasound images of the common carotid artery (CCA) 
bifurcation were selected at random representing 
different types of atherosclerotic plaque formation with 
irregular geometry typically found in this blood vessel. 
The images were captured using the ATL HDI-5000 
ultrasound scanner [16] and were recorded digitally on a 
magneto optical drive, with a resolution of 768x756 
pixels with 256 gray levels. The image resolution was 
16.66 pixels/mm.  

The ATL HDI-5000 ultrasound scanner is equipped 
with an 256-element fine pitch high-resolution 50 mm 
linear array, a multi element ultrasound scan head with 
an extended operating frequency range of 5-12 MHz 
and real spatial compound imaging. The scanner 
increases the image clarity using SonoCT imaging by 
enhancing the resolution and borders, so that interface 
margins can be displayed better. 

Traditionally, suspected plaque formation is 
confirmed using color blood flow imaging. The PW 
Doppler used can detect blood flow at a specific depth 
by selecting the time interval between the transmitted 
and received pulses. In this work we used the blood 
flow image obtained for an initial snake contour 
estimation. The limitations of this approach i.e. using 
the blood flow image to locate the blood borders are the 
following: a) the blood sometimes hides areas of the 
tissue (reverberations), and b) the colour does not 
always fill up the places where blood has a low speed.  

Plaques may be classified into the following types: 
type I: uniformly echolucent (black), where bright areas 
occupy less than 15% of the plaque area, type II: mainly 
echolucent, where bright echoes occupy 15-50% of the 
plaque area, type III: mainly echolucent, where bright 
echoes occupy 50-85% of the plaque area, type IV: 
uniformly echogenic, where bright echoes occupy more 
than 85% of the plaque area, type V: calcified cup with 
acoustic shadow so that the rest of the plaque cannot be 
visualized [4], [17].  In this study the plaques delineated 
were of type II, III and IV because it is easier to make a 
manual delineation since the fibrous cup, which is the 
border between blood and plaque, is more easily 
identified. If the plaque is of type I, borders are not 
visible well. Plaques of type V produce acoustic 
shadowing and the plaque is also not visible well. 
Plaques of type I and V were therefore not delineated in 
our study. 

Image Normalization  

The images were normalized manually by adjusting 
the image linearly so that the median gray level value of 
blood was 0-5, and the median gray level of adventitia 

(artery wall) was 180-190 [4]. The scale of the gray 
level of the images ranged form 0 to 255. This 
normalization (i.e. using blood and adventitia as 
reference points) was necessary in order to extract 
comparable measurements in case of processing images 
obtained by different operators or different equipment 
[4], [17]. 

Manual Delineation of Plaque 

One vascular expert delineated the plaques on all 80 
B-mode ultrasound images of the carotid artery after 
image normalization. The expert defined the outline of 
the plaque by marking 20 to 40 consecutive points on 
the plaque border on the B-mode image. In order to 
delineate the plaque on the B-mode image the expert 
was guided by the blood flow image.  

The plaque outline was drawn on the far wall 
(posterior) of the CCA because there, the intima media 
complex and the neighboring tissues are more visible. 
Delineations taken from the near wall are less accurate, 
because of overlap of echo pulses, and therefore less 
reproducible than those taken from the far wall [4], [17]. 

Despeckling 

Speckle is a form of multiplicative noise, which 
corrupts medical ultrasound imaging making visual 
observation difficult. In a recent study [18] we have 
shown that despeckle filtering improves the experts 
optical perception. Many researchers refer to speckle as 
the major difficulty in analyzing and segmenting 
ultrasound images [18]-[21]. In this study, the linear 
filter lsmv was used, which may be described by a 
weighted average calculation using sub region statistics 
to estimate statistical measures over pixel windows [18] 
(typically 5x5, 7x7, or 9x9 sliding pixel windows). It 
assumes that the speckle noise model has the following 
multiplicative form [18] 

jijiji nfg ,,, = with Nji ∈, ,  (6) 

where , represents the noise pixel in the middle of 
the moving window, , represents the noise-free 
pixel and , is a Rayleigh distributed noise on pixel. 
Hence the equation in this class may be traced back to 
the following equation [18] 

jig ,

jif ,

jin ,

)( ,,,, ggkgf jijijiji −+=  (7) 

where , is the new estimated noise free pixel value, 
 is the noisy pixel value in the moving window 

surrounding and including pixel , 

jif ,

jig ,

jig , g  is the local 
mean value of an MxN region,  is a weighting factor 
with 

jik ,

]1..0[∈k , and ji,  are the absolute pixel 
coordinates. The factor  is a function of the local 
statistics in a moving window. It can be found in the 
literature and may be derived as [21] 
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 where , and , represents the variance in the 
moving window and the variance of noise in the whole 
image, respectively [18]. The noise variance may be 
calculated for the logarithmically compressed image, by 
computing the average noise variance over a number of 
windows with dimensions considerable larger than the 
filtering window. In each window the noise variance is 
computed as [19] 

2
gσ 2

nσ

∑
=

=
p

i
ppn g

1

22 /σσ  (9) 

where , and 2
pσ pg , are the variance and mean of the 

noise in the selected windows respectively and p , is 
the index covering all windows in the whole image [19]. 
If the value of , is 1 (in edge areas) this will result 
to an unchanged pixel, whereas a value of 0 (in uniform 
areas) replaces the actual pixel by the local average, 

jik ,

g , 
over a small region of interest (see (7)). The moving 
window used for this study was 5x5. 

Snake Contour Initialization  

It is importnat to position the initial snake contour as 
close as possible to the area of interest otherwise the 
snake may be trapped into local minima or false edges, 
and converge in a wrong location. We have therefore 
developed an initialization procedure where the outline 
of the blood flow is used to detect the initial contour 
placement [9]. The initialisation procedure may be 
described as follows (see also Fig. 1): a) Cross correlate 
the B-mode image (see Fig. 1a) with the blood flow 
image (see Fig. 1b) and extract the blood flow area. b) 
Dilate the extracted blood flow area to close small gaps 
and remove small regions. c) From the dilated blood 
flow image, detect the blood flow edge contour (see Fig. 
1c). d) Mark a region of interest on the edge contour 
(task carried out by the expert, rectangle shown in Fig. 
1c), where the lower or upper boundary of plaque is 
covered to use it as initial snake contour. e) Sample the 
initial snake contour at 20 to 40 consecutive snake 
points to construct an interpolating B-spline (see Fig. 
1d). f) Connect the first and the last snake points on the 
initial contour to form a close contour. g) Despeckle the 
B-mode image by the lsmv filter. h) Map the initial 
plaque contour on the B-mode image. i) Deform the 
initial contour by a snake to accurately locate the 
plaque-blood borders, and j) Save the final plaque 
contour and display it on the B-mode image (see Fig. 
1f).  

 Evaluation of the Segmentation Methods 

To evaluate the performance of the four snakes 
segmentation methods, we compared the snakes 
segmented borders with the manually outlined borders 
defined by an expert. The intra- and inter-observer 
(a) Original image (b) Blood flow image 

  
(c) Initial blood flow edge 
contour 

(d) Sampled initial snake 
contour 

  
(e) Manual segmentation (f) Snakes segmentation 

Figure 1: (a) Original ultrasound image of a carotid artery 
ISSN: 1727-1983 © 2005 IFMBE  

with plaque, (b) blood flow image, (c) initial blood flow 
edge contour with expert selected area for the initial 
contour, (d) sampled initial snake contour, (e) manual 
segmentation of plaque, and (f) Snakes segmentation of 
plaque. 

variability caused by multiple experts, was not taken 
into account in this study. Let GT , denote the 
segmented area, representing ground truth, GT , its 
complement, and the segmented area, obtained by 
the computerized approach. The receiver operating 
characteristics (ROC) analysis [22] was used to assess 
the specificity and sensitivity of the method by the true-
positive fraction, TPF , and false-positive fraction, 

AS

FPF , detected [21] respectively. The TPF , is 
calculated when the expert detects a plaque (when 
plaque is present) and the computerized method 
identifies it as so, whereas the FPF , is calculated when 
the expert detects no plaque and the computerized 
method incorrectly detects that there is plaque present. 
The fraction is calculated when the expert 
identifies no plaque and the computerized method 
identifies it as so (absent), whereas the 

TNF

FNF  is 
calculated when the expert identifies plaque presence 
and the computerized method incorrectly identifies 
plaque absence.  Ratios of overlapping areas, can also 
be assessed by applying the similarity kappa index, 
KI , [23], and the overlap index [24]. These indices 
were computed as follows 
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where denotes the intersection and the union of 
the two areas. The intersection gives the probability that 
both and GT occur and the union is the probability 
that either or GT occur. 

I U
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Results 

Figure 2 illustrates the original longitudinal 
ultrasound B-mode image of the carotid artery with a 
manual delineation made by an expert in (a), and the 
results of the Williams&Shah snakes segmentation in 
(b), the Balloon segmentation in (c), the Lai&Chin 
segmentation in (d), and the GVF segmentation in (e). 

Figure 2f shows the segmentation contours computed in 
Fig. 2b-2e superimposed on the same image. As shown 
the manual and the snakes segmentation results are 
visually very similar suggesting that all four snakes 
segmentation methods can be interchangeable. 
Furthermore, when superimposing all segmentation 
results (see Fig. 2f) it is shown that the differences 

between all four snakes segmentation methods are very 
small. The best segmentation results were obtained by 
the Lai&Chin method (yellow line), which is closer to 
the manual segmentation result followed by the 
traditional snake (red line). Balloon and GVF yielded 
similar accuracy of the plaque segmentation, however 
GVF has a better ability to fill boundary concavities. 
The Balloon snake inflates and moves far away form the 
actual object in many cases. The Balloon model may 
identify smooth regions, especially when the initial 
snake contour is very close to the actual object of 
interest. Furthermore, the Balloon also inflates in many 
cases and moves far away from the object of interest, 
thus failing to identifies correctly image concavities.  

Table 1: ROC Analysis for the Four Different Plaque 
Segmentation Methods and the Manual Delineations Made by 
an Expert on 80 Ultrasound Images of the Carotid Artery 

Segmentation 
Method System 

Detects 

Expert 
Detects 

no plaque 
(%) 

Expert 
Detects 
plaque 

(%) 

KI 
(%) 

Overlap 
Index 

No 
plaque  TNF=77.6 FNF=19.6 Williams& 

Shah Plaque FPF=6.5 TPF=81.8 
78.9 67.6 

No 
plaque  TNF=77.1 FNF=13.9 Balloon 
Plaque FPF=5.4 TPF=80.4 

77.9 67.8 

No 
plaque TNF=80.9 FNF=15.6 Lai&Chin 
Plaque FPF=5.9 TPF=82.7 

80.7 69.3 

No 
plaque  TNF=79.4 FNF=14.9 GVF 
Plaque FPF=6.3 TPF=79.6 

77.3 66.6 

 

(a) Manual delineation  

 
(b) Williams&Shah (c) Balloon 

(d) Lai&Chin (e) GVF 

 

(f) Segmentation contours computed in (b)-(e) superimposed

Figure 2: Segmentation results on a longitudinal ultrasound 
B-mode image of the carotid artery with plaque, with: (a) 
manual segmentation, (b) Williams&Shah, (c) Balloon, 
(d), Lai&Chin, (e) GVF snake, and (f) segmentation 
contours computed in (b)-(e) superimposed. 

Table 1 presents a comparison of the four different 
plaque segmentation methods, with the manual 
segmentation, as performed by an expert, on 80 
ultrasound images of the carotid plaque. The results 
showed that the Lai&Chin segmentation method, agrees 
with the expert in 80.9% of the cases, TNF, by correctly 
detecting no plaque, in 82.7% of the cases, TPF, by 
correctly detecting a plaque, disagrees with the expert in 
15.6% of the cases, FNF, by detecting no plaque, and in 
5.9% of the cases, FPF, by detecting a plaque. The 
similarity kappa index, KI, and the overlap index, for 
the Lai&Chin snakes segmentation method were the 
highest, equal to 80.7% and 69.3% respectively. The 
best FPF, and FNF, fractions were given by the Balloon 
snakes segmentation method with 5.4% and 13.9% 
respectively. The GVF method showed for this 
experiment the worst results with the lowest similarity 
kappa index, KI (77.3%), and the lowest overlap index 
(66.6%).  

Concluding Remarks 

The results of this study showed that the 
segmentation method of Lai&Chin is the most 
appropriate to segment the plaque from ultrasound 
longitudinal images of the carotid artery after 
despeckle filtering with the lsmv filter and after 
image normalisation. 

The method presented in this dissertation, is to 
the best of our knowledge the first computerized 
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 approach for plaque segmentation in longitudinal 
ultrasound images of the carotid artery. Such a 
computerized method cannot only reduce 
significantly the time required for the image 
analysis, but also it can reduce the subjectivity that 
accompanies manual delineations and 
measurements. The method will be further 
evaluated on a larger number of ultrasound images 
and on multiple experts evaluation. Furthermore, it 
is expected that the segmentation method will be 
incorporated into an integrated system enabling the 
texture analysis of the segmented plaque, 
providing an automated system for the early 
diagnosis and the assessment of the risk of stroke.  
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