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Abstract: The evaluation and tracking of cortical func-
tion via scalp-recorded quantitative electroencephalo-
grams (qEEG) and concurrent source localization is a 
promising field for acute patient management and 
therapeutical monitoring of e.g. stroke and head-in-
jury. This requires accurate registration of EEG elec-
trode positions with pre-existing structural scans that 
reveal a subject’s individual anatomy. This paper fo-
cuses on the localization of EEG electrodes in three-di-
mensional (3D) space and their registration with mag-
netic resonance imaging (MRI) volume data. The per-
formance of several different surface-based registration 
algorithms is evaluated - in terms of registration error 
and processing time - on experimental data. Further-
more, registration performance is investigated as a 
function of data decimation.  
 
 
Introduction 
 

The correlation of anatomy and function is one of the 
most important tasks in modern brain imaging techniques. 
Electroencephalogram (EEG) (and also magnetoEG) 
methods have a number of important advantages over all 
other functional imaging modalities currently used to un-
derstand the functional organization of the human brain. 
These methods provide a very high temporal resolution, 
only restricted by the rate at which the signals are sampled, 
and they are non-invasive, widely available and relatively 
cheap. However, EEG has a fundamental source identifi-
cation problem known as the so-called inverse problem, i.e. 
the identification of the distribution of sources inside the 
brain that generate the voltage measured over an array of 
sensors distributed on the scalp surface. The main diffi-
culty when dealing with these kind of problems is its ill-
posed character due to the nonuniqueness of the solution. 
Put another way, there is an infinite number of generator 
configurations that result in the same voltage over the scalp 
surface. Much literature has been devoted to the solution of 
the inverse problem and the reader is referred to it at this 
point [1-5]. A quantitative electroencephalogram (qEEG), 
also referred to as brain electrical activity mapping 
(BEAM), enhances traditional surface EEGs by trans-
forming the data from a relatively large number of surface 
electrodes (24+) into a topographic image. These enhanced 
images of brain activity are then placed on a schematic 
map of the brain, and the data are analyzed by the size, lo-

cality and frequency of the activity. These activity data are 
subsequently compared to a database of normal patient 
brainwave activity to determine specific seizure types, fo-
cality or possible underlying medical conditions. Applica-
tions of qEEG include the evaluation of Alzheimer’s dis-
ease, cerebral vascular disease, epilepsy, dementia and en-
cephalopathy. Tomographic qEEG has been introduced for 
the 3D in-vivo visualization of the sources of abnormal 
EEG oscillations [6]. It has also been shown to correctly 
identify the anatomical locus of hyper-acute, acute and 
chronic stroke [7].  

For successful qEEG analysis it is advantageous to local-
ize effects seen in EEG using a subject’s individual anat-
omy as opposed to an average model of structure. The ini-
tial step within this framework is to acquire both 3D posi-
tional EEG electrode and magnetic resonance imaging 
(MRI) data. This paper describes how EEG electrode posi-
tions can be determined, and then focuses on the methods 
to register the EEG surface electrodes with respect to MRI 
volume data acquired from the same patient. Monitoring 
qEEG changes and accurate source localization due to pre-
cise registration will assist in diagnosis and subsequent 
treatment of patients (e.g. for evaluating the recovery of 
hand sensorimotor function that has been compromised by 
a stroke). 
 
Materials and Methods 
 

The task at hand is divided into three main parts: First, 
the determination of the EEG electrode positions in 3D and 
derivation of the corresponding point set. Second, the MRI 
volume scan and extraction of the head surface point set, 
and third, the 3D registration of those two point sets and 
assessment of the registration performance. 
 
1. Determination of the EEG electrode positions 

Electrode positions are determined by employing a track-
ing system (FASTRAK Polhemus, USA) which uses elec-
tro-magnetic fields to determine the 3D position of a re-
mote object. These electro-magnetic fields are transmitted 
by an assembly of three concentric, stationary antennas 
(called the transmitter, see Figure 1). The detection of the 
electro-magnetic fields is based on three concentric, remote 
sensing antennas (called the receiver). The received signals 
are inputted into an algorithm that computes the receiver’s 
position and orientation relative to the transmitter with a 
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positional accuracy of ±80 microns when the receivers are 
located within 76 cm of the transmitter [8]. As the system 
is electro-magnetic it is important that the operating area (≈ 
three times the distance from the transmitter to the furthest 
point to be localized) is free of metal. To determine the po-
sitions of several EEG electrodes in 3D space and their 
configuration with respect to one another, four receivers 
are needed: one for the EEG electrode positions by repeat-
edly using a stylus-pen, and three to correct patient (head) 
movements between stylus-pen acquisitions by using ap-
propriate coordinate transformations. For this study, the 
additional three receivers were located on the forehead, and 
the left and right mastoids, respectively. An EEG cap with 
64 electrodes was used (see Figure 1) which means that al-
together 64x4=256 receiver position readings were neces-
sary to determine the positions of all EEG electrodes with 
respect to the three reference receivers.  
 

 
 

Figure 1: Setup to determine the 64 EEG electrode posi-
tions on the cap by using a stylus-pen and reference receiv-
ers. 
 
Generally, a coordinate transformation of a point pA(x,y,z) 
in one Cartesian coordinate system A to pB(x,y,z) in another 
Cartesian coordinate system B can be defined (using vector 
notation): 
 

1 * ( )0p T p T e e e Bx y zB B A A B A
−= =→ →

uur uur uur uuruur
 (1) 

 
where the transformation matrix TB->A is defined by the 
three unity vectors , ,e e ex y z

uur uur uur
and the origin B0 (here at the 

receiver located on the forehead) of the coordinate system 
B [9]. The three unity vectors were derived from  
 

( ) ( )z y x y zB a b a c B c b B B B= − × − = − = ×
r rur ur r ruur uur uur uur uur

 (2) 

 
by normalization, where a

r
 and b

r
 represent the 3D 

receiver positions at the right and the left mastoid, and c
r

 
the receiver position at the forehead. “× ” is the vector 
cross product. Figure 2 shows the EEG electrode positions 
before and after the coordinate transformations and 
demonstrates the successful compensation of head 
movements during data acquisition. 

 
 

Figure 2: Left: positional raw data directly from the track-
ing system; right: coordinate-transformed EEG electrode 
positions (both top view). The black (a), green (b) and red 
(c)  crosses represent the positions of the three additional 
receivers for all 64 acquisitions performed. 

 
2. Head surface area extraction from MRI scans 

It is advantageous to apply MRI scan sequences that pro-
vide high contrast in order to accurately extract the head 
surface (i.e. the air-skin border). T1-weighted sequences 
are a good choice. The 3D head surface area is found from 
multiple 2D slices (like the ones shown in Figure 3) of a 
3D MRI data set acquired on a whole-body MRI system 
with a TEM head coil using a MPRAGE sequence with 
TE=3 ms and TR=2500 ms (TE and TR represent the echo 
and repetition time, respectively).  

Several methods can be used for image segmentation and 
air-skin edge detection. For segmentation, we decided to 
apply a global thresholding technique, optimal in terms of 
classification error that generates binary images from all 
2D MRI slices, followed by binary morphological closing 
with circular-shaped structuring elements. Morphological 
closing combines the dilation and erosion functions [10] 
and ensures proper boundary detection, even in critical ar-
eas like the nose or eyeballs (see Figure 3, right). For edge 
detection, first-order gradient spatial filters of the Sobel 
type were used in horizontal and vertical directions [11]. 
Figure 3 shows standard transverse MRI head slices, and 
overlaid in red the magnitude of the gradient which repre-
sents the air-skin border. It was not necessary to apply 
edge-linking procedures, which are usually very tedious. 
 

    
 

Figure 3: Gradient-based edge detection performed after 
image segmentation and binary closing results in the edge 
overlaid in red on the original images. The MRI scan was 
performed on a Bruker Medspec 4 Tesla whole-body MRI 
system providing cubic voxels with 1x1x1 mm3.  
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The entire head surface area as extracted from the 3D MRI 
dataset is illustrated in Figure 4.  
 

 
 

Figure 4: Entire head surface built from 255 transversal 
MRI slices like the ones in Figure 3. For display purposes, 
surface interpolation and shading were applied.  
 
3. 3D registration of EEG electrode locations and MRI 
volume data 

Registration is the process of aligning structures acquired 
with different sensors or with the same sensor at different 
times [12]. Medical image registration has a wide range of 
applications, one of which is combining functional infor-
mation from e.g. PET with morphological information 
from e.g. CT or MRI (in our case functional information is 
from qEEG). This “data fusion” involves determining a 
transformation that relates spatial information from one 
modality to the other. The complexity of this transforma-
tion can be specified by the degrees of freedom (DOF) and 
depends on the dimensionality and constraints of the struc-
tures to be registered. Most often, and especially in this 
work, the assumption is very much justified that internal 
anatomy of the patient’s head is not distorted or changed in 
spatial relationships so that it can be considered as a “rigid 
body”. As a result, a transformation with only six DOF 
(three translations and three rotations) can be used for 3D 
registration. Non-rigid registration requires many more 
DOF, e.g. for registration of tissue that deforms over time 
or registration of images to those from another individual.  
Registration algorithms can be divided into algorithms that 
use a number of either corresponding points or corre-
sponding surfaces, or operate directly on the image inten-
sities, the latter building upon crosscorrelation, joint prob-
ability/entropy, and mutual information [13].   

The most popular registration algorithms are surface-
based and minimize some measure of distance between the 
two surfaces to be registered. In this paper we focus on the 
“head and hat” and the “iterative closest point” algorithms 
for the registration of EEG electrode point sets with MRI 
surface data. 
  
A. In the “head and hat” algorithm the contours of the sur-
face extracted from the higher resolution modality repre-
sent the head while the hat is a set of unconnected 3D 
points that correspond to the same surface in the other mo-

dality [14]. The algorithm starts a series of trials to it-
eratively fit the rigid hat surface to the head. This process 
stops when the sum of the squares of the distances between 
each hat point and the head is minimized. The head and hat 
algorithm has been used with considerable success for reg-
istering images of the head [15]. 

In this paper we investigate two slightly modified ver-
sions of the traditional head and hat algorithm. The 3D reg-
istration is carried out by minimizing the function ( ),f t R

r
 

defined in Eqns. 3 and 4 which finds the minimal average 
distances (=error) between the two surface point sets. 
Here, the head surface is represented by the point set ex-
tracted from digital 3D MRI data while the hat surface is 
represented by the coordinate-transformed (Eqns. 1 and 2) 
EEG electrode positions. 

( ) ( )1* - * *,1
1

n
SAD f p e t wt i iin i

⎛ ⎞
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1
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In the rest of the paper we refer to the measures defined 
in Eqn. 3 as SAD (sum of absolute distances) and to the 
one in Eqn. 4 as SSD (sum of squares of distances). n 
represents the total number of EEG electrodes and || is the 
operator norm. pi

uur
 represents the closest point of the head 

surface point set to the position ei
uur

of the ith EEG electrode. 

t
r

 is the 3D translation vector while R is the rotation ma-
trix as applied to the EEG electrode point set. wi are ex-
perimentally determined weighting factors to compensate 
for the non-uniformly distributed electrodes on the EEG 
cap (higher density in the back of the cap).  

The parameters t
r

 and R are changed in the minimiza-
tion process to achieve the minimal registration error. We 
applied the Nelder-Mead simplex method which is a sim-
ple, iterative, multidimensional method for nonlinear un-
constraint optimization [16]. This method attempts to 
minimize a scalar-valued nonlinear function without re-
quiring the evaluation or existence of derivatives and thus 
falls into the class of direct search methods. The simplex 
method is fairly easy to implement and relatively robust 
but can be inefficient (slow) for certain problems. 
 
B. The “iterative closest point, ICP” algorithm has been 
widely applied in surface-based medical image registration 
[13, 17]. Here, one surface is usually represented by a set 
of points while the other can be made up of e.g. triangular 
patches. The algorithm works in two stages and iterates. 
The first stage involves finding the closest point on a patch 
to each of the surface points. The second stage then finds a 
rigid-body transformation that registers the closest point set 
to the surface point set based on corresponding homolo-
gous landmarks in the two point sets. This process is re-
peated until the smallest distance between the two surfaces 

( )min ,1,2,
error f t

t
⎛ ⎞= ⎜ ⎟
⎝ ⎠R

R

r
r
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is found, e.g. until the root-mean-square error drops by less 
than a preset value. A more detailed explanation of the ICP 
method can be found in [17, 18]. 
 
Pre-registration: Most registration methods including the 
ICP and head and hat algorithms have the same weakness, 
namely finding local minima of the distance measure when 
the surfaces exhibit rotational symmetries. This risk can be 
reduced by gradually increasing the spatial resolution to re-
fine the registration accuracy, combined with outlier rejec-
tion to ignore erroneous points in order to prevent gross 
misregistration. 

Within the framework of this paper, we decided to imple-
ment another way of reducing the likelihood of finding lo-
cal minima, namely to perform pre-registration. This en-
sures a reasonably good match at the start of the iterative 
registration process so that the global minimum or at least a 
satisfactory local minimum (depending on the registration 
error accepted and the processing time available) can be 
reached. Thus, it is imperative to align the two surface 
point sets (see Figure 5) in terms of translations and rota-
tions as precisely as possible prior to 3D registration.  
 

 
 

Figure 5: The raw head surface point set (blue) extracted 
from MRI data and the point set (red) of the 64 EEG elec-
trodes before pre-registration. One distance unit (=pixel) 
equals 1 mm in all figures shown in this paper. 
 
We greatly reduced the rigid translations between the two 
3D point sets by calculating their centroids and aligning 
them. This was followed by a translation in z direction so 
that the top of both point sets had the same z coordinate. 
This is a fast and easy way of taking partial volume effects 
into account since most often the MRI point set has a larger 
extension in z direction compared with the EEG electrode 
point set. Higher performance - but also computationally 
more expensive - methods exist, e.g. [19].  
 

The rigid body rotations in the xy plane were compen-
sated for by using singular value decomposition (SVD) 
[20]. SVD is a common method to detect the spatial orien-
tation of a structure. It factorizes an M x N (here real-
valued) matrix X into the product of two orthonormal ma-
trixes U and V of sizes M x M and N x N, respectively, and 
an M x N matrix S with non-negative singular diagonal ele-
ments:  
 

X=U*S*VT. 

A geometrical interpretation of SVD is that the image of 
the unit sphere under any M x N matrix multiplication is a 
hyperellipsoid. Considering the three factors of the SVD 
separately in 2D, note that VT is a pure rotation of the unit 
circle to coincide with the coordinate axes. Second, the cir-
cle is stretched by S in the directions of the coordinate axes 
to form an ellipse. The third step rotates the ellipse by U 
into its final position. The columns of U are denoted by the 
vectors ui

uur
, the principal axes of the final ellipse.  

A direct consequence of the geometric interpretation is 
that the largest singular value of S measures the “magni-
tude” of X, i.e. the longest principal semi-axis of the hy-
perellipsoid. If a hyperellipsoid is to be approximated with 
a line segment, the best one can do is to take the line seg-
ment as the longest axis of the ellipsoid. If the longest and 
second longest axes of the ellipsoid are to be taken, one 
gets the best approximation by a 2D ellipse, and so on for 
higher dimensionalities. 

The point sets in this study are represented by M x 3 ma-
trices of which only the x and y components were taken to 
calculate two major axes using SVD. Figure 6 shows the 
raw MRI head surface and the EEG electrode position 
point sets. Overlaid are the major 2 axes in the horizontal 
xy plane. The two corresponding matrices V from SVD 
containing the spatial orientations are then used to pre-
register the two 3D point sets by rotating the EEG point 
set, see Figure 7.  
 

 
 

Figure 6: Top views of the MRI head surface (left) and the 
EEG electrode position point sets (right). The spatial orien-
tations determined by SVD analysis are shown as black 
broken lines (major axes of ellipses in the xy plane that best 
approximate the point sets).  
 

 
 

Figure 7: Both point sets after pre-registration, shown on 
top of each other with full visibility of all points, even for 
those at the backside. It can be seen that after pre-
registration some misregistration remains.  
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Results 
 

Upon pre-registration, the surface point sets derived from 
MRI and electromagnetic EEG electrode tracking were 
registered using the SAD, SSD and ICP algorithms de-
scribed in the “Materials and Methods” section. All proc-
essing methods in this paper were implemented in 
MATLABTM (The MathWorks Inc., Natick). Figure 8 rep-
resentatively shows the final registration result when the 
SAD method was used. 
 

 
 

Figure 8: Registration of the 64 EEG electrode positions 
(red) with the MRI point set (blue) using pre-registration 
and the SAD method. The results with SSD and ICP were 
virtually identical on visual examination and thus are not 
shown. 
 

The result presented in Figure 8 was derived using a head 
surface point set that was decimated by a factor of 10 com-
pared with the entire head surface MRI point set containing 
197,000 points. After pre-registration (see Figure 7) an av-
erage error of ≈4.95 mm per electrode existed. Registration 
performed with these two pre-registered point sets using 
the SAD, SSD and ICP methods gave almost identical av-
erage errors of approximately 2.3 mm. Thus the registra-
tion process decreased the average errors by about 50%. 
This percentage is strongly dependent on the performance 
of the applied pre-registration.  

Another goal of this paper was to investigate the influ-
ences of MRI head surface data decimation (starting at a 
spatial resolution of 1x1x1 mm3) on the registration time 
and error. First, decimation was applied only to the trans-
verse (xy) MRI planes, second only in axial (z) direction, 
and third in the transverse and axial directions simultane-
ously following several different reduction schemes. The 
third option was necessary in order to achieve larger deci-
mations factors of up to 25 and keep spatial resolution in 
all 3 directions approximately equal. It was found (not 
shown) that the method for data decimation is not critical. 
For the data sets used in this paper and decimation factors 
of up to about 15 neither the registration error nor time sig-
nificantly depended on how the data were reduced. This is 
mostly due to the large spatial oversampling of the original 
MRI point set. For data decimation factors between 15 and 
25 we applied the decimation scheme that provided the 
smallest registration errors. 
 

A reduction of the MRI point set results in a decreased 
spatial resolution, no matter what the scheme for data 
decimation is. In order to be able to compare the registra-
tion performance of SAD, SSD, and ICP we first found the 
best match of the MRI and EEG electrode point sets using 

the different distance measures defined earlier. Upon reg-
istration, we then calculated the average linear registration 
error per electrode which we plotted in Figure 9. When the 
entire (=undecimated) head surface MRI point set was 
used for 3D registration the average error for the SAD 
method was ≈1.55 mm. As can be seen in Figure 9, all 
three methods exhibit approximately the same registration 
errors for data decimation factors of up to 25. When the 
methods were tested for reasons of comparison with ex-
perimental point sets derived from MRI only, the errors 
were at least one order of magnitude lower than those 
found when registering multi-modality MRI and EEG 
point sets. It is very difficult in practice to assure firm con-
tact of all EEG electrodes with the head surface. This can 
be caused by different amounts of hair and applied elec-
trode contact gel as well as spatially varying strain of the 
EEG cap. Overall, our experiments revealed that the sur-
face points derived from the utilized tracking system and 
standard MRI scans can have average distances of about 1-
2 mm. It is clear that even the best rigid registration 
method is not able to reduce the registration error below 
this value. However, this Figure is sufficient for successful 
qEEG analysis. 
 

 
 

Figure 9: Decimation of the MRI head surface point set in-
creases the registration error.  
 
It is evident from Figure 9 that the smallest registration er-
rors occur when undecimated head surface point sets with 
high spatial resolution are used, however the longest proc-
essing times are needed due to the large amount of data 
(see Figure 10). It was found that the ICP method has a 
processing time advantage, most clearly pronounced at 
high spatial MRI point set resolutions (it is the Nelder-
Mead simplex method used for SAD and SSD that per-
forms very slowly). 
 

 
 

Figure 10: Decimation of the head surface point set de-
creases the registration time (shown for a Pentium IV with 
1.7 GHz clock frequency). 
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Conclusions 
  

3D surface-based registration can be realized in various 
ways. In this paper, we investigated the performance of 
three different surface-based methods to register two 3D 
point sets originating from MRI head scans and an elec-
tromagnetic tracking system providing the locations of 
EEG electrodes attached to the head. Basic image process-
ing steps were performed to extract the head surface area 
from the digital 3D MRI data. To avoid gross misregistra-
tion due to the existing rotational symmetries of the point 
sets, a pre-registration method mainly building upon the 
singular value decomposition was implemented. 

Pre-registered data were then fed into the SAD, SSD and 
ICP algorithms for final registration where, for the first 
two, the Nelder-Mead simplex method was used to mini-
mize the registration error and find the corresponding 6 pa-
rameters of the rigid coordinate transformation that best 
matched the EEG with the MRI point set.  

Our results show that registration errors down to about 
≈1.55 mm per electrode can be achieved at the cost of 
longer processing times when MRI data with high spatial 
resolution (1 mm in each direction) are used. Furthermore, 
it was revealed that average surface point distances in the 
two point sets as high as 1-2 mm can occur in practice, 
mainly due to the difficulties in the proper mechanical po-
sitioning of the EEG electrodes when using an EEG cap. 

We also investigated the effects of MRI data decimation 
on the registration performance. For example, when data 
decimation by a factor of 5 is applied, the average registra-
tion error increases by about 20% while the processing 
times decrease by factors of approximately 9 (SAD), 4 
(SSD), and 5 (ICP).  

All evaluated registration algorithms have sufficient reg-
istration performance for combined qEEG/MRI analysis 
and source localization methods, with the ICP method ex-
hibiting the shortest processing time for the point sets used 
in this paper. 
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