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Abstract: The expression and numerical values for 
effective shear viscosity of a dilute suspension of 
spherical microparticles in blood are obtained. If 
blood reveals properties of a polar fluid during 
hydrodynamic interaction with suspended particles, 
then the Cowin polar fluid should be used for the 
rheological modeling of blood. The above-mentioned 
statement is true even in the cases of blood flow in 
large blood vessels or in channels of different 
devices, in which blood, in the absence of suspended 
spherical particles, behaves as the Newtonian fluid. 

 
Introduction 

 
A dilute suspension in blood of rigid microspheres 

of the same size possessing zero buoyancy is 
considered in this paper. 

Suspensions in blood can arise [1] on addition of 
particles of contrast agents for the purposes of X-ray 
visualization of blood vessels, on addition of particles 
of medical substances with the aim of delivery of drugs 
to affected organs and so on. 

Suspension in blood also arise outside of the human 
body, for example, on addition of polymeric beads 
containing a fine magnetic colloid encapsulated in the 
inner core of the polymeric matrix [1] for the 
improvement of biochemical/biomedical analyses of 
blood. Suspensions in blood arise too in devices for 
dialysis of blood. 

While solving medical problems through the use of 
suspensions in blood, the possible consequences of 
biomechanical intervention into the human body 
should be remembered. In particular, it is necessary to 
study the influence of the addition of suspended 
particles on the viscosity of blood. In this paper, the 
simplest – spherical – form of suspended particles is 
considered, and also the analytical expression and 
numerical values for the effective viscosity of a dilute 
suspension of microspheres in blood as a suspension 
carrier fluid are obtained. 
 
The rheological model of blood as the carrier fluid 
of a suspension 

 
We assume in this paper that the radius of the 

suspended particles is significantly larger than the 
characteristic size of blood microstructure elements – 
red blood cells, platelets and white blood cells. This 
allows one to consider the interaction of blood with 

suspended particles as a hydrodynamic interaction of a 
liquid continuum with bodies suspended in it. 

As usual in suspension rheology, the flow of the 
carrier fluid of the suspension – blood – around the 
suspended particles is considered within the Stokes 
approximation. 

While choosing the continual rheological model of 
blood it is necessary to be knowledgeable about the 
rheological peculiarities of blood in gradient flows, its 
structural features, and also how the structure of blood 
influences its behaviour as a liquid medium. 

In accordance with [2], blood behaves differently 
depending on the characteristic size of the flow region. 
Particulaly, in large vessels it behaves as the 
Newtonian fluid and in small vessels its behaviour is 
non-Newtonian. 

The total volume of red blood cells is 
approximately 50 times more than the total volume of 
other formed elements of blood – platelets and white 
blood cells [2], therefore the rheological behaviour of 
blood is determined by the concentration and 
mechanical properties of red blood cells only [2]. 

As in any concentrated suspension, the high 
concentration of red blood cells – approximately 46% - 
in human blood causes neighboring red blood cells to 
change the spinning of each other in gradient flows of 
blood. Therefore, each red blood cell’s own angular 
velocity in gradient flows of blood differs from the 
regional angular velocity of the elementary blood 
volume that they occupy. This fact explaines the choice 
of the Cowin polar fluid [5] in the present paper, as in 
papers [3, 4], for rheological modeling of blood. 

The phenomenological rheological model of the 
Cowin polar fluid [5] is one of the structural continuum 
models [6]. In order to account for the influence of the 
elements of fluid microstructure on the stress state in 
the fluid, it is assumed in the Cowin model [5] that the 
fluid particles, found in an elementary volume which is 
moving with the translational velocity iv  and rotating 

with the regional angular velocity ,
1
2k klr r lvω ε= , may 

rotate furthermore with the angular velocity kΩ  
around the center of the elementary volume. This 
means that the particles of the medium may have their 
own angular characteristics that differ from the angular 
velocity of the elementary volume as a whole. It is also 
asumed that a force couple is acting between the fluid 
particles. In this case, the effect of one part of the fluid 
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 on another part adjacent to it is characterised not only 
by the surface forces (viscous stresses) but also surface 
momentums (couple stresses). The rheological 
equations of state of the Cowin polar fluid are 

,kHdp ijijijij 22 −+−= µδτ  (1) 

( ) ( ) ,ij ij rr ij jiαδ β γ β γΛ = Ψ + + Ψ + − Ψ  (2) 

where ijτ  is the viscous stress tensor; ijΛ  is the couple 

stress tensor; ijd  is the strain rate 

tensor, ( )( )i,jj,iij vvd += 21 ; j,iv  is the velocity 

gradient tensor; ( )mmmijijH ωε −Ω= ; mijε  is the 

Levi-Civita tensor; ijΨ  is the gradient of the fluid 

particles’ own angular velocity mΩ , j,iij Ω=Ψ ; 

, , , ,kµ α β γ  - are rheological constants; the comma in 
the indices denotes differentiation in the direction of 
the axis denoted by the index which follows the 
comma. 

Considering the elementary flows in the papers [5, 
7], it was obtained that the effective viscosity of the 
Cowin polar fluid (Eqs. (1), (2)) does not depend on 
the flow’s kinematic characteristics, but is determined 
only by the flow’s geometry and the rheological 
constants of the model defined by Eqs. (1), (2). So, the 
effective viscosity of the polar fluid (Eqs. (1), (2)) in 
the Couette flow is defined by the formula 

( )
( ) ( )

0

0 0 0 0
,

1 tha N l h N l h
µ

µ =
−

 (3) 

where h  is one-half of the width of the channel in the 
Couette flow; 0N  and 0l  are determined by the 
formulas 

0 0, ;kN l
k

β γ
µ µ

+
= =

+
 

th z  is the hyperbolic tangent. 
According to [5], the parameters 0N  and 0l  vary 

within the limits 0 00 1, 0.N l≤ ≤ ≥  At 0 0N = , the 
rheological model of a polar fluid becomes a 
rheological model of the Newtonian fluid with the 
viscosity µ  [5]. From Eq. (3), in this case, it is 

determined that ( )0
aµ µ= . 

The parameter 0l , which has a dimension of length, 
is linked, according to [5], with the characteristic size 
of the microstructure elements of real microstructure 
fluids that are modeled by the polar fluid (Eqs. (1), 
(2)). The analysis of Eq. (3) shows that, while 

00 1N< ≤ , the influence of the rotational viscosity k  

of the polar fluid on the effective viscosity ( )0
aµ  only 

takes place at finite values of 02h l , i.e. in relatively 
narrow channels of the Couette flow of the polar fluid. 
In the opposite case, i.e. at 0h l →∞ , the influence of 
rotational viscosity k  of the polar fluid (Eqs. (1), (2)) 

on its effective viscosity ( )0
aµ  is absent; in this case, it 

follows from Eq. (3) that ( )0
aµ µ= , i.e. the polar fluid 

(Eqs. (1), (2)) behaves as the Newtonian fluid with the 
viscosity µ . This analysis demonstrates the similarity 
of rheological behaviour of the Cowin polar fluid at 

00 1N< ≤  in narrow and wide channels and the 
rheological behaviour of blood in small and large blood 
vessels respectively. 

The constitutive equations (1), (2) of the Cowin 
polar fluid were used in the papers [3, 4] for the 
rheological modeling of blood. The comparison in [4] 
of the velocity profiles of the polar fluid and blood in 
the Poiseuille flows, with the use of experimental data 
obtained in [8] allowed to obtain the values of 
parameters 0N , 0l  of the Cowin polar fluid for the 
rheological modeling of blood at the different 
haematocrit values bC  (Table1). 

 
The effective viscosity of a dilute suspension of 
beads in blood 

 
The study of a dilute suspension of beads of the 

same radius possessing zero buoyancy in the Cowin 
polar fluid (Eqs.(1), (2)) in [9] allowed to obtaine the 
expression for the effective viscosity aµ  of such 
suspension: 

( )( )0 01 2, 5 ; 2 ,a cF N a lµ µ= +  (4) 
where c  is the volume concentration of suspended 
beads, a  is the radius of suspended beads; 

( )
( )( )

( ) ( )( )
0 3 2 0 0

0 0
0 5 2 0 0

3 2
, 2 .

2 2

N K a l N
F N a l

a l K a l N
=  (5) 

In (5 ( ) ( )3 2 5 2andK z K z  are the functions of 
MacDonald of half-integer order. 

The effective viscosity aµ  defined by Eqs. (4), (5) 
was obtained in [9] using the assumptions of the 
Einsteinian theory [10] of dilute suspensions: 

1) rigid spherical suspended particles have the 
same dimensions; 

2) the diameter d  of suspended spherical particles 
is much smaller than the characteristic dimension l  of 
the suspension macroflow region but is much greater 
than the characteristic dimension l  of microstructural 
elements of the carrier fluid; 

;l d l<< <<  
3) no-slip condition is fulfilled on the surface of the 

suspended particles; 
4) the motion of the suspension’s carrier fluid with 

respect to the suspended particles is slow; 
5) the volume concentration of suspended particles 

is small; the suspension is assumed to be diluted; 
6) suspended particles possess zero buoyancy. 
The use of Eqs. (1), (2) in this paper for rheological 

modeling of blood as a suspension carrier fluid requires 
the fulfillment of the assumptions 1 – 6 for the 
considered suspension of spherical particles in blood. 
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 The assumptions 1, 2, 4 – 6 are not specific, they 
can be used for a suspension in blood as well as for a 
suspension with a low-molecular carrier fluid. But the 
fulfillment of condition 3 for a suspension in blood is 
not evident, since blood as a carrier fluid of the 
suspension is itself a suspension of its formed 
elements. But in spite of that, according to [4], no-slip 
condition for blood is also fulfilled. The comparison in 
[4] of different boundary conditions on the surface 
flowed around by blood, that was modeled by the 
Cowin polar fluid (Eqs. (1), (2)), showed that the 
results of theoretical calculations and experiments have 
the best coincidence at the fulfillment of no-slip 
condition. 

The functions of MacDonald of half-integer order 
( ) ( )3 2 5 2andK z K z  are expressed in terms of 

elementary functions [11]. It allows us to obtain the 
effective viscosity aµ  of the considered dilute 
suspension in blood defined by Eqs. (4), (5) in a form 
suitable for analysis and calculations 

( ) ( )
( )( ) ( ) ( )

22
0 0 0 0

22 2
0 0 0 0 0

2 3 2 351 .
2 2 3 3 2 1 3

a
N a l N a l

c
N a l N a l N

µ µ
⎛ ⎞

+ +⎜ ⎟
= +⎜ ⎟

− + − +⎜ ⎟
⎝ ⎠

 (6) 

The evaluation of parameters 0N  and 0l  of the 
polar fluid (Eqs. (1), (2)) in [4] while modeling blood 
flows allows to investigate the influence of the polar 
properties of blood on the effective viscosity of a dilute 
suspension of beads in it using Eq. (6). 

First of all, according to Eq. (6), in the limiting case 
0c = , i.e. in the absence of suspended particles in the 

suspension, the carrier fluid – blood – modeled by a 
polar fluid behaves as the Newtonian fluid with the 

viscosity µ . Such a result corresponds with real 
behaviour of blood in large blood vessels [2]. This 
means that Eq. (6) determines the effective viscosity of 
a dilute suspension of beads in blood precisely in large 
blood vessels. 

Secondly, the analysis of Eq. (6) also reveals that 
the increase of 0a l  leads to the disappearence of the 
influence of rotational viscosity of blood k  at 

00 1N< ≤  on the suspension’s effective viscosity. In 
such a limiting case, Eq. (6) takes the form 

( )1 2, 5 ,a cµ µ= +  
i.e. the effective viscosity of a dilute suspension of 
beads in blood is determined by the Einstein formula 
[10]. 

It is obvious from Eq. (6) that the influence of the 
rotational viscosity k  of blood as a carrier fluid of the 
considered suspension on the effective suspension 
viscosity aµ  is revealed at finite values of the ratio 

02a l , i.e. at a comparatively small size of suspended 
spherical particles.  

The equation (6) is used in the paper for finding the 
numerical values of the characteristic viscosity  

[ ]
c

a
a µ

µµ
µ

−
=  

of the suspension. The results of the calculation of 
[ ]aµ  for the considered suspension in blood at the 
different values of radius a  of suspended particles and 
haematocrit values bC  of  blood as a carrier fluid of 
the suspension are given in Table 1. 

 
Table 1: Numerical values of the characteristic viscosity [ ]aµ  of dilute suspension of beads in blood. 

[ ]aµ  bC ,% 0N  6
0 10 ,ml ⋅  

1 2 3 4 
5 0,5021 8,475 2,8385 2,8071 2,7808 2,7586 

10 0,5316 12,968 2,9952 2,9543 2,9193 2,8891 
20 0,5501 16,597 3,1111 3,0649 3,0246 2,9893 
30 0,5547 20,526 3,1963 3,1492 3,1072 3,0699 
40 0,5569 23,462 3,2486 3,2019 3,1599 3,1219 

 
The Table 1 columns 1 – 4 for the characteristic 

viscosity [ ]aµ  of the suspension correspond to the four 
values of radius a  of suspended particles: 

53.5 10a −= ⋅ m, 54 10−⋅ m, 54.5 10−⋅ m, 55 10 m−⋅ . 
Such values of radius a  of suspended spherical 
particles are significantly greater than the effective 
radius of red blood cells, which ranges from 

62.56 10 m−⋅  to 62.88 10 m−⋅  considering that the red 
blood cells’ volume ranges from 370µm  to 3100µm  
[2]. Such a choice of radius of suspended spherical 
particles ensures correctness of using the Einstein 
theory [10] to rheological study of dilute suspension in 
blood. 

 
Conclusions 

 
The analysis of the analytical expression for the 

effective viscisity aµ  of a dilute suspension of beads in 
blood (Eq. (3.3)) and the numerical values for the 
characteristic viscosity [ ]aµ  of the considered 
suspension shows that blood with suspended beads 70 - 
100 microns in diameter reveals its non-Newtonian, i.e. 
polar, properties even in those gradient flows in which 
blood behaves as the Newtonian fluid in the absence of 
suspended particles. Among such flows are blood 
flows in middle-sized and large vessels or in channels 
of most apparatuses outside the human body. 
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 The obtained numerical values of the characteristic 
viscosity [ ]aµ  of the considered suspension also show 
that taking into account the polar properties of blood as 
a carrier fluid of the suspension leads to the increase of 
the suspension’s characteristic viscosity in comparison 
with a dilute suspension with the Newtonian model of 
blood. In particular, the characteristic viscosity [ ]aµ  is 
increased from the well known Einstein value 2.5 [10] 
for a dilute suspension of beads with the Newtonian 
carrier fluid to the values listed in Table 1, which were 
obtained in the present paper while modeling blood as 
a carrier fluid of the suspension by the Cowin polar 
fluid (Eqs. (2.1), (2.2)) for different values of 
haematocrit values bC  and different values of radius a  
of the suspended beads. 

The studies carried out in the present paper expand 
the range of uses of the Cowin polar fluid as a 
rheological model of blood. The Cowin polar fluid 
should be used to model blood as a carrier fluid of a 
dilute suspension of rigid microspheres even in middle-
sized and large blood vessels or in channels of most 
apparatuses in cases when blood exhibits properties of 
the polar fluid while interacting with suspended 
particles. 
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