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Abstract: In this study the Pattern 
Electroretinography (PERG) signals derived from 
evoked potential across retinal cells of subjects after 
visual stimulation were analyzed using Artificial 
Neural Network (ANN) with 54 healthy and 41 
diseased subjects. ANN was employed to PERG 
signals to distinguish between healthy eye and 
diseased eye. Supervised network examined was a 
competitive Learning Vector Quantization network. 
The designed classification structure has about 
94.7% sensitivity, 96.7% specifity, 5.26% false 
negative, 3.22% false positive and correct 
classification is calculated to be 96%. Testing results 
were found to be compliant with the expected results 
that are derived from the physician’s direct 
diagnosis. The end benefit would be to assist the 
physician to make the final decision without 
hesitation. 
 
Introduction 
 

Noninvasive clinical electrophysiological and 
psychophysical measurements allow an assessment of 
the health of almost the entire length of the visual 
system. An understanding of each test and their 
interrelationships assists the diagnosis of a number of 
diseases. This is facilitated by the layered nature of the 
visual system and the assignment of electrical potentials 
from specific tests to particular cell layers. [1,2] 

The pattern electroretinogram (PERG) is a retinal 
biopotential that is evoked when a temporally 
modulated patterned stimulus of constant total 
luminance (checkerboard or grating) is viewed. It 
receives clinical and research attention because it can 
provide information about inner retinal cells and the 
macula. It was first recorded in 1964 when Riggs and 
his associates used the technique to record from a local 
retinal area. If a subject gazes at a reversing pattern such 
as a checker-board, the total quantity of light entering 
the eye remains constant as the pattern reverses, but in 
the region of the retinal image, there are repetitive 
changes in illumination. PERG is derived from the 
evoked potential across retinal cells after visual 
stimulation such as the checker-board. The PERG is 
measured by an electrode embedded in a contact lens, 
which is placed on the subject’s left cornea. By using a 
reference electrode attached to the ipsilateral ear, the 

summed response (differential between the corneal 
electrode and reference electrode) from the entire retina 
is obtained by Tomey→ Primus 2.5 Electrophysiological 
Device [1-4]. 

Reporting of PERG results should include 
representative three waveforms with appropriate 
amplitude and time calibrations (Figure 1). The first, 
small, cornea-negative wave arises with a delay of about 
35ms and is called N35; the second; a major positive 
wave, peaks at about 50ms (P50) and the last is 
followed  by a negative wave through at 95ms  (N95) 
[1-3]. 

 

Figure 1: Normal PERG with the components labeled 
 
 

 
Figure 2: PERG responses samples of two different 
person’s eye. 
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 For the basic PERG the stimulus consists of a 
checker-board. The computer records the PERG 
response samples over a period of 204 ms. The time 
progression of these frames forms a contour, which is 
examined by a medical expert to determine the presence 
of eye diseases [1]. The PERG receives clinical and 
research attention in both neurological and 
ophthalmological diseases these ocular hypertension, 
glaucoma, optic neuritis, optic antrophy and amplyopia 
[5]. However the PERG signal has a small amplitude, 
typically in the region of 0,5-8 µV depending on 
stimulus characteristics [4].  

For the PERG, amplitude measurements are made 
between peaks and troughs: The P50 amplitude is 
measured from the trough of N35 to the peak of P50. In 
some patients the N35 is poorly defined; in these cases 
N35 is replaced by the average between time zero and 
the onset of P50. The N95 amplitude is measured from 
the peak of P50 to the trough of N95. It should be 
recognized that measuring in this way; N95 includes the 
P50 amplitude [4]. 

This research is concentrated on the diagnosis of 
optic nerve disease through the analysis of PERG 
signals with the help of an Artificial Neural Network 
(ANN) that will not only simplify the diagnosis but also 
enable the physician to make a quicker judgment about 
the existence of optic nerve disease more confidencely. 
An ANN can determine its conditions and adjust itself 
to provide different responses by using inputs and 
desired outputs, which are provided to the system. The 
most important thing about an ANN is that it works as 
an expert system which will eventually help the 
physicians on the decision making process about the 
existence of the optic nerve disease. 

An ANN is a mathematical model consisting of a 
number of highly interconnected processing elements 
organized into layers, the geometry and functionality of 
which have been resembled to that of the human brain. 
The ANN may be regarded as possessing learning 
capabilities in as much as it has a natural propensity for 
storing experimental knowledge and making it available 
for later use [6-8]. By virtue of its parallel distribution, 
an ANN is generally robust, tolerant of faults and noise, 
able to generalize well and capable of solving nonlinear 
problems. Operation of an eye, either optic nerve 
disease or healthy, may be regarded as an inherently 
nonlinear system due to the absence of the property of 
frequency preservation as required by the definition of a 
linear system [9]. Application of ANNs in the medical 
field include diagnosis of myocardial infarction [10], 
electrocardiogram analysis [11], differentiation of 
assorted pathological data [12, 13], EMG analysis [14], 
EEG recognition [15] and ERG classification [3]; 
however neural network analysis of PERG signals is a 
relatively new approach. 

In this study, the PERG responses have been sorted 
into two classes (see Figure 2); healthy and diseased. In 
order to do this classification, an ANN composed of 
Learning Vector Quantization network (LVQ).  

As a result of this grouping, a trained expert can 
make a classification based on the features found in the 
PERG frames. Our primary research motivation was to 
advance the research of optic nerve disease, and develop 
a novel decision making system for identification of eye 
diseases. 
 
Material and Methods 
 

The Tomey Primus 2.5 electrophysiology unit was 
used for transient PERG recording in the 
Ophthalmology Department of Erciyes University 
Hospital. Representative PERG signal waves for each 
group are seen in Figure 2.  

Electrophysiological PERG signals were acquired 
from patients and healthy volunteers. The test group 
consisted of 95 people composed of 54 healthy and 41 
diseased (optic neuritis) subjects.  

The recording electrodes should consist of a corneal 
contact lens electrode which supports the eyelids and 
reference electrodes placed centrally on the forehead or 
near each orbital rim. The ground electrode can be 
located on the forehead or ear. Skin electrodes should 
have a resistance of 10kΩ or less measured at 30-200 
Hz. The electrodes should be cleaned after use with 
each patient. It is recommended that all reports contain 
measurements of P50 and N95 amplitude and P50 
latency (the peak of N95 is often rather broad 
precluding accurate latency measurement of this 
component). Whenever practical, reporting of PERG 
results should include representative waveforms with 
appropriate amplitude and time calibrations. Because of 
the small amplitude of the PERG signal averaging is 
always necessary. For the transient PERG the analysis 
period should be 150 ms or greater [4].  

All data which was recorded from any patients were 
used as input of the ANN. PERG signals are sampled at 
a proper frequency levels and then grouped in certain 
number of data points. After recording, to obtain 
optimum result we have composed feature vector from 
value of differences of P50-N35 and N35–N95 for input 
ANN. 

The system consists of four parts: (a) measurement 
of PERG signals, (b) neural network inputs were 
selected, (c) classification using LVQ network, (d) 
classification results.  

The ANN chosen was a supervised competitive 
network which was implemented in the The competitive 
network used was a LVQ network.  

LVQ is a method for training competitive layers in a 
supervised manner. A competitive layer will 
automatically learn to classify input vectors. However, 
the classes that the competitive layer finds are 
dependent only on the distance between input vectors. 
An LVQ network has a first competitive layer and a 
second linear layer. The competitive layer learns to 
classify input vectors. The linear layer transforms the 
competitive layer’s classes into target classifications 
defined by the user [17].  
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Figure 3. Structure of ANN 
 
The advantage of the LVQ networks compared to 

statistical methods of classification is that the last 
demand first a good comprehension of the parameters 
involved in order to define the classification rules, while 
the former explore and understand unknown 
environments by simply presenting to them input and 
output patterns [7, 15].  

In this study, the network architecture is shown in 
Figure 3. The LVQ network consists of two layers. The 
first layer is a competitive layer, which learns to classify 
input vectors into one of the subclasses. The 
competitive neuron whose weight vector forms the 
closest match with the input vector is classified as 
output 1. The second linear layer transforms the 
subclasses of the competitive layer to the output target 
classes so that each competitive neuron has assigned 
one target (output). Both the competitive layer and the 
linear layer have one neuron per class; thus, the 
competitive layer can learn up to subclasses. This is turn 
combined by the linear layer to form the target classes. 
The output neuron assigned to the winning competitive 
neuron also has a value of 1 while all the other output 
neurons have a value of 0. Depending on which neuron 
had a value of 1, the PERG recording was classified as 
healthy or optic nerve disease. The network used in this 
study had the following parameters:  (1) 4 neurons in 
competitive layer, (2) 2 neurons (classes) in output 
layer, and (3) 100 training epochs. There were two 
alternative stopping rules applied during the training of 
this network: the number of training epochs and the 
error goal. Two neurons in the output layer were used: 
healthy and optic nerve disease [14, 15]. The train input 
data set consisted of 23 healthy and 22 optic nerve 
disease patients, while the test data set was made of 31 
healthy and 19 optic nerve disease patients.  

The second layer weights will have 51% (23 of the 
45 in output above) of its columns with a 1 in the first 
row, corresponding to class 1, and 49% of its columns 
will have a 1 in the second  row, corresponding to class 
2. The second layer weights matrix says that if the 
competitive layer produces a 1 as the first or second 
element, the input vector will be classified as class 1. 
Otherwise it will be in class 2. 

The first two competitive neurons are connected to 
the first linear neuron (with weights of 1), while the 
second two competitive neurons are connected to the 

second linear neuron. All other weights between the 
competitive neurons and linear neurons have values of 0 
[15-17]. 
 
Results 

 
After the training phase, testing of the LVQ neural 

network was established. The data, which has not been 
used as an input to the network, was applied to the 
network for testing the network performance.  

A testing mean square error of 0.04 was observed 
for our optimized LVQ network with a training mean 
square error of 0.03. Success rate of classification was 
accomplished as 94-97% with the designed feature 
extraction and the neural network structures. The end 
results were classified as Healthy and Diseased. There 
has been 1 false classification in the negative group, 
while 30 subjects were correctly recognized as healthy. 
With a higher accuracy in the positive (optic nerve 
disease) group, only 1 subject were misclassified, and 
18 people were accurately classified as diseased  (Figure 
4). The overall results point that, 96% correct 
classification was achieved, whereas two false 
classifications have been observed for the group of 50 
people in total. Within these results, this network has 
about 94.7% sensitivity, 96.7% specifity, 5.26% false 
negative and false positive and is calculated to be 
3.22%.  
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 The outputs of actual network and desired network 
are set to vary within the range of healthy to disease. In 
Figure 4 is showed the output values of 31 healthy and 
19 optic nerve disease subjects. It is seen in Figure 4 
that the desired network output was given pattern 
characterized as healthy except one which has the value 
as disease. This means that one of 31 healthy subjects 
and one of 19 disease subjects were misclassified. 
 
Discussion and Conclusion 
 

The LVQ structure that we have built had given very 
promising results in classifying the healthy and optic 
nerve diseased eyes. We are not claiming to replace the 
currently used devices for PERG, on the other hand we 
are proposing a complimentary system that can be 
coupled to software of the ophthalmic electrophysiology 
devices. The end benefit would be to assist the 
physician to make the final decision without hesitation. 
The limitation of our proposed neural network structure 
is that the classification is realized based solely on the 
presence of abnormality with the eye. However, we are 
projecting to also sort out the diseased group based on 
the source of the ophthalmic problem. 

The fuzzy appearance of the signals sometimes 
makes physicians suspicious about the existence of eye 
diseases and causes false diagnosis. Our technique 
focuses on this problem using ANN to decide and assist 
the physician to make the final judgment in confidence.  

In this study, we believe that this research developed 
an expert system for the interpretation of the PERG 
signals using ANN. The stated results show that the 
proposed method can make an effective interpretation. 
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